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Almost	  Instantaneous	  (AI)	  FV	  codes	

Instantaneous	 Almost	  Instantaneous	

No.(Code	  Trees)	 One	 Two	

Source	  Symbols	 Leaves	 Leaves	  +	  incomplete	  node	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (master	  node)	

Decoding	  Delay	 None	 At	  most	  2	  bits.	

GeneralizaSon	  of	  instantaneous	  binary	  FV	  codes　　　　　　　　　　　　　　　　　　　　　　　　　　 	  　
	   	   	   	   	   	   	   	  	  	  [Yamamoto,	  Tsuchihashi,	  Honda,	  2015]	

Example	  of	  binary	  AIFV	  code	  trees.	
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Fig. 1. An example of binary AIFV code trees.

II. PRELIMINARIES

A. Binary AIFV codes

In this section, we introduce the definition of a binary AIFV code proposed in [3] and [4]. A binary AIFV code

uses two binary code trees, denoted by T0 and T1, in a way such that the code is uniquely decodable and the

decoding delay is at most two bits. To illustrate how this works, we begin with a list of properties satisfied by the

trees of a binary AIFV code.

1) Incomplete internal nodes (nodes with one child) are divided into two categories, master nodes and slave

nodes.

2) Source symbols are assigned to either master nodes or leaves.

3) The child of a master node must be a slave node, and the master node is connected to its grandchild by code

symbols ‘00’.

4) The root of T1 must have two children. The child connected by ‘0’ from the root is a slave node. The slave

node is connected by ‘1’ to its child.

Properties 1) and 2) indicate that a binary AIFV code allows source symbols to be assigned to the incomplete

internal nodes. Properties 3) and 4) can be interpreted as constraints on the tree structures to ensure that decoding

delay is at most two bits. Fig. 1 illustrates an example of a binary AIFV code for X = {a, b, c, d}, where slave

nodes are marked with squares. It is easy to see that the trees satisfy all the properties of a binary AIFV code.

Given a source sequence x1x2x3 · · · , an encoding procedure of a binary AIFV code goes as follows.

Procedure 1 (Encoding of a binary AIFV code).

1) Use T0 to encode the initial source symbol x1.

2) When xi is encoded by a leaf (resp. a master node), then use T0 (resp. T1) to encode the next symbol xi+1.

Using a binary AIFV code of Fig. 1, a source sequence ‘acdbaca’ is encoded to ‘0.11.1100.10.0.11.01’, where

dots ‘.’ are inserted for the sake of human readability, but they are not in the actual codeword sequences. The code

trees are visited in the order of T0 → T0 → T1 → T0 → T0 → T0 → T1.

July 8, 2016 DRAFT
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Fig. 1. An example of binary AIFV code trees.

II. PRELIMINARIES

A. Binary AIFV codes

In this section, we introduce the definition of a binary AIFV code proposed in [3] and [4]. A binary AIFV code

uses two binary code trees, denoted by T0 and T1, in a way such that the code is uniquely decodable and the

decoding delay is at most two bits. To illustrate how this works, we begin with a list of properties satisfied by the

trees of a binary AIFV code.

1) Incomplete internal nodes (nodes with one child) are divided into two categories, master nodes and slave

nodes.

2) Source symbols are assigned to either master nodes or leaves.

3) The child of a master node must be a slave node, and the master node is connected to its grandchild by code

symbols ‘00’.

4) The root of T1 must have two children. The child connected by ‘0’ from the root is a slave node. The slave

node is connected by ‘1’ to its child.

Properties 1) and 2) indicate that a binary AIFV code allows source symbols to be assigned to the incomplete

internal nodes. Properties 3) and 4) can be interpreted as constraints on the tree structures to ensure that decoding

delay is at most two bits. Fig. 1 illustrates an example of a binary AIFV code for X = {a, b, c, d}, where slave

nodes are marked with squares. It is easy to see that the trees satisfy all the properties of a binary AIFV code.

Given a source sequence x1x2x3 · · · , an encoding procedure of a binary AIFV code goes as follows.

Procedure 1 (Encoding of a binary AIFV code).

1) Use T0 to encode the initial source symbol x1.

2) When xi is encoded by a leaf (resp. a master node), then use T0 (resp. T1) to encode the next symbol xi+1.

Using a binary AIFV code of Fig. 1, a source sequence ‘acdbaca’ is encoded to ‘0.11.1100.10.0.11.01’, where

dots ‘.’ are inserted for the sake of human readability, but they are not in the actual codeword sequences. The code

trees are visited in the order of T0 → T0 → T1 → T0 → T0 → T0 → T1.
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In this section, we introduce the definition of a binary AIFV code proposed in [3] and [4]. A binary AIFV code

uses two binary code trees, denoted by T0 and T1, in a way such that the code is uniquely decodable and the
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A[er	  using	  a	  master	  node,	  use	  T1	  for	  the	  next.	  

No	  ‘00’	  from	  the	  root.	

Only	  ‘00’	  from	  the	  
master	  node.	

àThe	  codes	  are	  uniquely	  decodable.	
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1 導入
1.1 FV符号

瞬時 FV符号の平均符号長の最適化問題は以下のようになる．

min
K∑

k=1

p(xk)l(xk)

s.t.
K∑

k=1

2−l(xk) ≤ 1

l(xk) ∈ N ⊂

Huffman符号，AIFV符号，エントロピーの間には以下の不等式が成り立つ．

H(X) ≤ LAIFV ≤ LHuffman < H(X) + 1 (1)

H(X) ≤ LHuffman < H(X) + 1 (2)

H(X) ≤ LAIFV < H(X) +
1

2
(3)

−1 +
√
5

2
≈ 0.618 < pmax (4)

X = {a, b, c} (5)

p(a) = 0.9, p(b) = 0.05, p(c) = 0.05 (6)

H(X) = 0.569 (7)

1.2 K-ary AIFV符号

符号木 T0, T1, · · · , TK−2 を使用する．Ti の根からでる枝は i以上の情報源シンボルが割り振られる．符号
拡張した Huffman木に使うメモリは O(|X |2)なのに対して，Binary AIFV符号木に使うメモリは O(|X |)で
あり，省メモリである．

1

[Yamamoto+	  2015]	

Worst-‐case	  Redundancy	  of	  AIFV	  codes	

AIFV	  codes	  have	  good	  empirical	  performance.	  
Even	  beat	  Huffman	  code	  for	   	  	  for	  some	  sources.	  

	  	   	   	   	   	   	  [Yamamoto+	  2015]	
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Recently, Almost Instantaneous Fixed-to-Variable length (AIFV) codes were proposed as a new class of uniquely

decodable codes that generalize the class of instantaneous FV codes [3][4]. Unlike an instantaneous FV code, which

uses only one code tree, an AIFV code is allowed to use multiple code trees. Furthermore, source symbols on the

AIFV code trees are assigned to incomplete internal nodes as well as to leaves. In the case of a binary AIFV code

[4], two code trees are used in a way such that decoding delay is at most two bits, which is why the code is called

“almost” instantaneous.

Binary AIFV codes are empirically shown to be powerful in data compression. Not only do the codes attain

better compression ratio than Huffman codes, experiments suggest that for some sources, AIFV codes can even beat

Huffman codes for X 2, where X is the source alphabet [4]. Nonetheless, few theoretical results are known about

the codes. In particular, an upper bound on the redundancy (the expected code length minus entropy) of binary

AIFV codes is only known to be 1, a trivial bound derived from the fact that binary AIFV codes include Huffman

codes. Also, it is pointed out in [4] that when more code trees are allowed to be used, binary AIFV codes might

be able to attain a better compression performance.

The main contribution of this paper is two-fold. First, we present a non-trivial theoretical result on the redundancy

of optimal binary AIFV codes, suggesting superiority of the codes over Huffman codes. In particular, we show that

the tight upper bound on the redundancy of optimal binary AIFV codes is 1
2 , the same bound as that of Huffman

codes for X 2. Note that for K = |X |, the size of memory required to store code trees is O(K) for a binary AIFV

code, while O(K2) for a Huffman code for X 2 [4]. Thus, binary AIFV codes can attain comparable compression

ratio of Huffman codes for X 2 with much less memory requirement. We also derive a tight upper bound on the

redundancy of optimal binary AIFV codes in terms of pmax ≥ 1
2 , where pmax is the probability of the most likely

source symbol. We compare this upper bound with its Huffman counterpart [5] and show that binary AIFV codes

significantly improve the bound for every pmax ≥ 1
2 .

Second, we extend the original binary AIFV codes by allowing the code to use more code trees. We show

that when the extended code is allowed to use m ≤ 4 code trees, the decoding delay is at most m bits and an

upper bound on the redundancy of the code is improved to 1
m . Note that the redundancy of Huffman codes for

Xm per source symbol is also upper bounded by 1
m . However, the size of a Huffman code tree for Xm scales

exponentially with m, while the size of an extended AIFV code trees scales only linearly with the number of code

trees. Therefore, our extended AIFV codes are much more memory efficient than Huffman codes for extended

alphabet. Our conjecture is that when the size of alphabet is large enough, the redundancy of extended AIFV codes

can also be upper bounded by 1
m for 5 ≤ m.

The rest of the paper is organized as follows. In Section II, we introduce binary AIFV codes with two code trees

[4] and some properties of Huffman codes. We extend the binary AIFV codes in Section III so that the codes use

more than two code trees. In Section IV, we give several theorems, which give upper bounds on the redundancy of

optimal binary AIFV codes for both the original and extended cases. All the theorems in Sections IV are proved

in Section V. Section VI concludes the paper.

July 8, 2016 DRAFT
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Worst-‐case	  redundancy	  in	  terms	  of	  	   	   	  (Our	  result)	  
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第 3章

2元準瞬時 FV符号の冗長度

この章では，2元準瞬時 FV符号の冗長度のタイトな上界を示す．まず，ハフマン符号の冗
長度の上界について知られている結果を述べ，その対となる 2元準瞬時 FV符号の冗長度の研
究成果を示す．次に，ハフマン符号の sibling property [7] を紹介し，最後にそれを用いて 2

元準瞬時 FV符号の冗長度の上界を証明する．

3.1 ハフマン符号の冗長度
定理 2.2で述べたように，一般の情報源に対するハフマン符号の冗長度のタイトな上界は 1

である．しかし，情報源が特定の条件を満たしていれば，ハフマン符号の冗長度は改善される
ことが知られている．特に，情報源の最頻出シンボルの生起確率 pmax の値が与えられたとき
のハフマン符号の冗長度の上界を評価する研究が多く行われてきた [7][8][9][10][11]．以下の冗
長度の上界は Gallagerによって与えられたものである [7]．

定理 3.1 ([7, Theorem 2]). pmax ≥ 1
2 について，ハフマン符号の冗長度は 2−pmax−h(pmax)に

よって上から抑えられる．ここで，h(·)は 2元エントロピー関数を表す．すなわち，0 < x < 1

に対して次のように定義される．

h(x) ≡ −x log2 x− (1− x) log2(1− x).

定理 3.1によって与えられる冗長度の上界はタイトである．生起確率 (pmax, 1−pmax− δ, δ)

を持つ情報源に対するハフマン符号の冗長度は δ → 0の極限で定理 3.1によって与えられる
冗長度の上界と一致する.

図 3.1 は，pmax の値についてのハフマン符号の上界をプロットしたものである．図 3.1 で
与えられる上界は pmax ≥ 1

6 についてタイトであることが示されている [12]．図 3.1から，ハ
フマン符号の冗長度が 1に近づくのは，pmax が 1に近づいたときのみであることががわかる．
つまり，情報源シンボルの生起確率が非常に偏っているときのみ，ハフマン符号の冗長度は定
理 2.2で示された冗長度の上界である 1に近づく．
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1 導入
1.1 FV符号

瞬時 FV符号の平均符号長の最適化問題は以下のようになる．

min
K∑

k=1

p(xk)l(xk)

s.t.
K∑

k=1

2−l(xk) ≤ 1

l(xk) ∈ N K = |X | ≪

X = {a, b, c}
X 2 = {aa, ab, ac, ba, bb, bc, ca, cb, cc}
X 3 = {aaa, aab, aac, aba, abb, abc, aca, acb, acc, baa, bab, bac,

bba, bbb, bbc, bca, bcb, bcc, caa, cab, cac, cba, cbb, cbc, cca, ccb, ccc}
rC ≡ LC −H(X) ≥ 0.

LC ≡
∑

x∈X
pX(x)lC(x).

Y = {0, 1}

pmax ≡ max
x∈X

pX(x).

m 1/m m 1/m

a b c d

1

<	  1/2	  (Our	  result)	
[Yamamoto+	  2015]	

Worst-‐case	  Redundancy	  of	  AIFV	  codes	
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Theorem	  (Worst-‐case	  redundancy	  of	  AIFV	  codes)	  
For	   	   	   	   	   	  ,	  the	  worst-‐case	  redundancy	  of	  AIFV	  
codes	  is 	   	  	  
	  
	  
	  

12 第 3 章 2 元準瞬時 FV 符号の冗長度

図 3.1. pmax の値が指定されたときのハフマン符号の冗長度の上界．

3.2 2元準瞬時 FV符号の冗長度
前節では，ハフマン符号の冗長度の上界について既に得られている結果を紹介した．この節
では，その対となる 2元準瞬時 FV符号の冗長度に関して得られた結果 (定理 3.2と定理 3.3)

を述べる．ハフマン符号と 2元準瞬時 FV符号の冗長度の上界を比較することで，2元準瞬時
FV符号の方がより良い圧縮性能を保証することを示す．定理の証明は 3.4節で行う．

定理 3.2. pmax ≥ 1
2 なる情報源に対して，2元準瞬時 FV 符号の冗長度は f(pmax)で上から

抑えられる．ただし，f(p)は以下で定義される関数である．

f(p) =

{
p2 − 2p+ 2− h(p) if 1

2 ≤ p ≤ −1+
√
5

2 ,
−2p2+p+2

1+p − h(p) if −1+
√
5

2 ≤ p < 1.
(3.1)

この上界は，任意の ϵ > 0に対して 2元準瞬時 FV符号の冗長度が f(pmax)− ϵ以上になる情
報源が存在するという意味でタイトである．

図 3.2 は定理 3.1 と定理 3.2 で与えられる冗長度の上界を比較したものである．すべての
pmax ≥ 1

2 について，2元準瞬時 FV符号の冗長度の上界がハフマン符号の冗長度の上界より
小さくなっていることがわかる．
さらに，pmax < 1

2 のときの 2元準瞬時 FV符号の冗長度の上界を定理 3.3で示す．

定理 3.3. pmax < 1
2 に対して，2元準瞬時 FV符号の冗長度は 1

4 で上から抑えられる．

ただし，定理 3.3で示した上界はタイトであるとは限らない．定理 3.2と定理 3.3を組み合
わせることで，系 3.1を得る．

系 3.1. 一般の情報源に対して，2元準瞬時 FV符号の冗長度は 1
2 によって上から抑えられる.

系 3.1によって与えられる 2元準瞬時 FV符号の冗長度の上界はタイトで，2次のシンボル
拡大を行ったハフマン符号と同じ冗長度の上界の値を持つ．さらに，特定の情報源に対して

Theorem	  (Redundancy	  upper	  bound	  of	  AIFV	  codes)	  
For 	   	   	  	  	  	  	  ,	  the	  worst-‐case	  redundancy	  is	  at	  most	  
	   	  	  	  	  .	
	  

Cover輪読

胡緯華

2015/10/20

1 導入
1.1 FV符号

瞬時 FV符号の平均符号長の最適化問題は以下のようになる．

min
K∑

k=1

p(xk)l(xk)

s.t.
K∑

k=1

2−l(xk) ≤ 1

l(xk) ∈ N K = |X | ≪

X = {a, b, c}
X 2 = {aa, ab, ac, ba, bb, bc, ca, cb, cc}
X 3 = {aaa, aab, aac, aba, abb, abc, aca, acb, acc, baa, bab, bac,

bba, bbb, bbc, bca, bcb, bcc, caa, cab, cac, cba, cbb, cbc, cca, ccb, ccc}
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2 ≤ p ≤ −1+
√
5

2 ,
−2p2+p+2

1+p − h(p) if −1+
√
5

2 ≤ p < 1.
(1)
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O(|X |)
瞬時 FV符号の平均符号長の最適化問題は以下のようになる．

min
K∑

k=1

p(xk)l(xk)

s.t.
K∑

k=1

2−l(xk) ≤ 1

l(xk) ∈ N

Huffman符号，AIFV符号，エントロピーの間には以下の不等式が成り立つ．

H(X) ≤ LAIFV ≤ LHuffman < H(X) + 1 (1)

H(X) ≤ LHuffman < H(X) + 1 (2)

H(X) ≤ LAIFV < H(X) +
1

2
(3)

−1 +
√
5

2
≈ 0.618 < pmax (4)

X = {a, b, c} (5)

p(a) = 0.9, p(b) = 0.05, p(c) = 0.05 (6)

H(X) = 0.569 (7)

1.2 K-ary AIFV符号

符号木 T0, T1, · · · , TK−2 を使用する．Ti の根からでる枝は i以上の情報源シンボルが割り振られる．符号
拡張した Huffman木に使うメモリは O(|X |2)なのに対して，Binary AIFV符号木に使うメモリは O(|X |)で
あり，省メモリである．
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H(X) = 0.569 (7)

1.2 K-ary AIFV符号

符号木 T0, T1, · · · , TK−2 を使用する．Ti の根からでる枝は i以上の情報源シンボルが割り振られる．符号
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√
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1.2 K-ary AIFV符号

符号木 T0, T1, · · · , TK−2 を使用する．Ti の根からでる枝は i以上の情報源シンボルが割り振られる．符号
拡張した Huffman木に使うメモリは O(|X |2)なのに対して，Binary AIFV符号木に使うメモリは O(|X |)で
あり，省メモリである．
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Abstract—AIFV codes are lossless codes that generalize the
class of instantaneous FV codes. The code uses multiple code
trees and assigns source symbols to incomplete internal nodes
as well as to leaves. AIFV codes are empirically shown to attain
better compression ratio than Huffman codes. Nevertheless, an
upper bound on the redundancy of optimal binary AIFV codes
is only known to be 1, the same as the bound of Huffman codes.
In this paper, the upper bound is improved to 1/2, which is
shown to be tight. Along with this, a tight upper bound on the
redundancy of optimal binary AIFV codes is derived for the case
pmax ≥1/2, where pmax is the probability of the most likely source
symbol. This is the first theoretical work on the redundancy of
optimal binary AIFV codes, suggesting superiority of the codes
over Huffman codes.

I. INTRODUCTION

Fixed-to-Variable length (FV) codes map source symbols
to variable length codewords, and can be represented by
code trees. In the case of a binary instantaneous FV code,
source symbols are assigned to leaves of the binary tree.
The codeword for each source symbol is then given by the
path from the root to the corresponding leaf. It is well-
known by McMillan’s paper [1] that Huffman codes [2] attain
the minimum average code length in the class of uniquely
decodable FV codes. However, it was assumed in [1] that a
single code tree is used for a uniquely decodable FV code.
Hence, if we use multiple code trees for a uniquely decodable
FV code, it may be possible to attain better compression rate
than Huffman codes.

Recently, Almost Instantaneous Fixed-to-Variable length
(AIFV) codes were proposed as a new class of uniquely
decodable codes that generalize the class of instantaneous FV
codes [3][4]. Unlike an instantaneous FV code, which uses
only one code tree, an AIFV code is allowed to use multiple
code trees. Furthermore, source symbols on the AIFV code
trees are assigned to incomplete internal nodes as well as to
leaves. In the case of a binary AIFV code [4], two code trees
are used in a way such that decoding delay is at most two
bits, which is why the code is called “almost” instantaneous.

Binary AIFV codes are empirically shown to be powerful
in data compression. Not only do the codes attain better
compression ratio than Huffman codes, experiments suggest
that for some sources, AIFV codes can even beat Huffman
codes for X 2, where X is the source alphabet [4]. Nonetheless,

few theoretical results are known about the codes. In particular,
an upper bound on the redundancy (the expected code length
minus entropy) of optimal binary AIFV codes is only known
to be 1, a trivial bound derived from the fact that binary AIFV
codes include Huffman codes.

In this paper, we present the first non-trivial theoretical
result on the redundancy of optimal binary AIFV codes,
suggesting superiority of the codes over Huffman codes. In
specific, we show that the tight upper bound on the redundancy
of optimal binary AIFV codes is 1

2 , the same bound as that
of Huffman codes for X 2. Note that for K = |X |, the size
of memory required to store code trees is O(K) for a binary
AIFV code, while O(K2) for a Huffman code for X 2 [4].
Thus, a binary AIFV code can attain competitive compression
ratio of a Huffman code for X 2 with much less memory
requirement.

We also derive a tight upper bound on the redundancy of
optimal binary AIFV codes in terms of pmax ≥ 1

2 , where
pmax is the probability of the most likely source symbol.
We compare this upper bound with its Huffman counterpart
[5] and show that optimal binary AIFV codes significantly
improve the bound for every pmax ≥ 1

2 .

II. PRELIMINARIES

A. Binary AIFV codes

A binary AIFV code uses two binary code trees, denoted by
T0 and T1, in a way such that the code is uniquely decodable
and the decoding delay is at most two bits. To illustrate how
this works, we begin with a list of properties satisfied by the
trees of a binary AIFV code.

1) Incomplete internal nodes (nodes with one child) are
classified into two categories, master nodes and slave
nodes.

2) Source symbols are assigned to either master nodes or
leaves.

3) The child of a master node must be a slave node, and
the master node is connected to its grandchild by code
symbols ‘00’.

4) The root of T1 must have two children. The child
connected by ‘0’ from the root is a slave node. The
slave node is connected by ‘1’ to its child.



Proof	  idea	

Goal:	  
Prove	  bounds	  of	  op7mal	  binary	  AIFV	  codes	  
	  
Challenge:	  	  
No	  simple	  algorithm	  known	  to	  construct	  the	  
op7mal	  AIFV	  code.	  
à	  Difficult	  to	  analyze	  op7mal	  code	  directly…	  
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Our	  approach:	  
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from	  Huffman	  codes.	  
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class of instantaneous FV codes. The code uses multiple code
trees and assigns source symbols to incomplete internal nodes
as well as to leaves. AIFV codes are empirically shown to attain
better compression ratio than Huffman codes. Nevertheless, an
upper bound on the redundancy of optimal binary AIFV codes
is only known to be 1, the same as the bound of Huffman codes.
In this paper, the upper bound is improved to 1/2, which is
shown to be tight. Along with this, a tight upper bound on the
redundancy of optimal binary AIFV codes is derived for the case
pmax ≥1/2, where pmax is the probability of the most likely source
symbol. This is the first theoretical work on the redundancy of
optimal binary AIFV codes, suggesting superiority of the codes
over Huffman codes.

I. INTRODUCTION

Fixed-to-Variable length (FV) codes map source symbols
to variable length codewords, and can be represented by
code trees. In the case of a binary instantaneous FV code,
source symbols are assigned to leaves of the binary tree.
The codeword for each source symbol is then given by the
path from the root to the corresponding leaf. It is well-
known by McMillan’s paper [1] that Huffman codes [2] attain
the minimum average code length in the class of uniquely
decodable FV codes. However, it was assumed in [1] that a
single code tree is used for a uniquely decodable FV code.
Hence, if we use multiple code trees for a uniquely decodable
FV code, it may be possible to attain better compression rate
than Huffman codes.

Recently, Almost Instantaneous Fixed-to-Variable length
(AIFV) codes were proposed as a new class of uniquely
decodable codes that generalize the class of instantaneous FV
codes [3][4]. Unlike an instantaneous FV code, which uses
only one code tree, an AIFV code is allowed to use multiple
code trees. Furthermore, source symbols on the AIFV code
trees are assigned to incomplete internal nodes as well as to
leaves. In the case of a binary AIFV code [4], two code trees
are used in a way such that decoding delay is at most two
bits, which is why the code is called “almost” instantaneous.

Binary AIFV codes are empirically shown to be powerful
in data compression. Not only do the codes attain better
compression ratio than Huffman codes, experiments suggest
that for some sources, AIFV codes can even beat Huffman
codes for X 2, where X is the source alphabet [4]. Nonetheless,

few theoretical results are known about the codes. In particular,
an upper bound on the redundancy (the expected code length
minus entropy) of optimal binary AIFV codes is only known
to be 1, a trivial bound derived from the fact that binary AIFV
codes include Huffman codes.

In this paper, we present the first non-trivial theoretical
result on the redundancy of optimal binary AIFV codes,
suggesting superiority of the codes over Huffman codes. In
specific, we show that the tight upper bound on the redundancy
of optimal binary AIFV codes is 1

2 , the same bound as that
of Huffman codes for X 2. Note that for K = |X |, the size
of memory required to store code trees is O(K) for a binary
AIFV code, while O(K2) for a Huffman code for X 2 [4].
Thus, a binary AIFV code can attain competitive compression
ratio of a Huffman code for X 2 with much less memory
requirement.

We also derive a tight upper bound on the redundancy of
optimal binary AIFV codes in terms of pmax ≥ 1

2 , where
pmax is the probability of the most likely source symbol.
We compare this upper bound with its Huffman counterpart
[5] and show that optimal binary AIFV codes significantly
improve the bound for every pmax ≥ 1

2 .

II. PRELIMINARIES

A. Binary AIFV codes

A binary AIFV code uses two binary code trees, denoted by
T0 and T1, in a way such that the code is uniquely decodable
and the decoding delay is at most two bits. To illustrate how
this works, we begin with a list of properties satisfied by the
trees of a binary AIFV code.

1) Incomplete internal nodes (nodes with one child) are
classified into two categories, master nodes and slave
nodes.

2) Source symbols are assigned to either master nodes or
leaves.

3) The child of a master node must be a slave node, and
the master node is connected to its grandchild by code
symbols ‘00’.

4) The root of T1 must have two children. The child
connected by ‘0’ from the root is a slave node. The
slave node is connected by ‘1’ to its child.
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Fixed-to-Variable length (FV) codes map source symbols
to variable length codewords, and can be represented by
code trees. In the case of a binary instantaneous FV code,
source symbols are assigned to leaves of the binary tree.
The codeword for each source symbol is then given by the
path from the root to the corresponding leaf. It is well-
known by McMillan’s paper [1] that Huffman codes [2] attain
the minimum average code length in the class of uniquely
decodable FV codes. However, it was assumed in [1] that a
single code tree is used for a uniquely decodable FV code.
Hence, if we use multiple code trees for a uniquely decodable
FV code, it may be possible to attain better compression rate
than Huffman codes.

Recently, Almost Instantaneous Fixed-to-Variable length
(AIFV) codes were proposed as a new class of uniquely
decodable codes that generalize the class of instantaneous FV
codes [3][4]. Unlike an instantaneous FV code, which uses
only one code tree, an AIFV code is allowed to use multiple
code trees. Furthermore, source symbols on the AIFV code
trees are assigned to incomplete internal nodes as well as to
leaves. In the case of a binary AIFV code [4], two code trees
are used in a way such that decoding delay is at most two
bits, which is why the code is called “almost” instantaneous.

Binary AIFV codes are empirically shown to be powerful
in data compression. Not only do the codes attain better
compression ratio than Huffman codes, experiments suggest
that for some sources, AIFV codes can even beat Huffman
codes for X 2, where X is the source alphabet [4]. Nonetheless,

few theoretical results are known about the codes. In particular,
an upper bound on the redundancy (the expected code length
minus entropy) of optimal binary AIFV codes is only known
to be 1, a trivial bound derived from the fact that binary AIFV
codes include Huffman codes.

In this paper, we present the first non-trivial theoretical
result on the redundancy of optimal binary AIFV codes,
suggesting superiority of the codes over Huffman codes. In
specific, we show that the tight upper bound on the redundancy
of optimal binary AIFV codes is 1

2 , the same bound as that
of Huffman codes for X 2. Note that for K = |X |, the size
of memory required to store code trees is O(K) for a binary
AIFV code, while O(K2) for a Huffman code for X 2 [4].
Thus, a binary AIFV code can attain competitive compression
ratio of a Huffman code for X 2 with much less memory
requirement.

We also derive a tight upper bound on the redundancy of
optimal binary AIFV codes in terms of pmax ≥ 1

2 , where
pmax is the probability of the most likely source symbol.
We compare this upper bound with its Huffman counterpart
[5] and show that optimal binary AIFV codes significantly
improve the bound for every pmax ≥ 1

2 .

II. PRELIMINARIES

A. Binary AIFV codes

A binary AIFV code uses two binary code trees, denoted by
T0 and T1, in a way such that the code is uniquely decodable
and the decoding delay is at most two bits. To illustrate how
this works, we begin with a list of properties satisfied by the
trees of a binary AIFV code.

1) Incomplete internal nodes (nodes with one child) are
classified into two categories, master nodes and slave
nodes.

2) Source symbols are assigned to either master nodes or
leaves.

3) The child of a master node must be a slave node, and
the master node is connected to its grandchild by code
symbols ‘00’.

4) The root of T1 must have two children. The child
connected by ‘0’ from the root is a slave node. The
slave node is connected by ‘1’ to its child.



Proof	  outline	  (1/6)	
・Simple	  two-‐stage	  construcSon	  of	  sub-‐op7mal	  
AIFV	  code	  trees	  from	  Huffman	  tree	

16	

Ex.)	  	

Sibling	  property	  
	  	  	   	  [Gallager	  1978]	

Sibling	  pair:	  
	

Algorithm 1 Transformation of THuffman into Tbase.

for k = 2, . . . ,K − 1 do
if q2k−1 is a leaf and 2q2k < q2k−1 then

Convert the sibling pair (q2k, q2k−1) into a master node
and its grandchild. · · · (∗)

end if
end for

Fig. 4. The conversion from a sibling pair (q2k−1, q2k) into a master node
and its grandchild.

Now, consider a K-ary source and let THuffman be the cor-
responding Huffman code tree. We transform THuffman into a
new tree Tbase using Algorithm 1. The conversion shown by
(∗) in Algorithm 1 is illustrated in Fig. 4. It is an operation
that lifts up q2k−1 to make a master node and pulls down the
entire subtree of q2k to one lower level. Two nodes, q2k−1 and
q2k, are then connected by code symbols ‘00’. Let K be the
set of indices whose corresponding sibling pairs are converted
by Algorithm 1 and let U denote the set of indices of entire
sibling pairs, so that

K = {k ∈ {2, . . . ,K − 1}|q2k−1 is a leaf and 2q2k < q2k−1},
U = {1, . . . ,K − 1}.

Lemma 4. For 1
2 ≤ q1 ≤ 2

3 , the redundancy of optimal binary
AIFV codes is upper bounded by q21 − 2q1 + 2− h(q1).

Proof. Let T0 be Tbase and transform Tbase into T1 by the
operation described in Fig. 5. It is easy to see that T0 and T1

are valid binary AIFV code trees, satisfying all the properties
mentioned in Section II-A.

The total probability assigned to master nodes is∑
k∈K q2k−1 for both T0 and T1. Thus, it follows from

the encoding procedure 2) in Section II-A that the tran-
sition probabilities, P (T1|T0) and P (T0|T1), are given by∑

k∈K q2k−1 and 1 −
∑

k∈K q2k−1, respectively. Therefore,
the stationary probabilities, P (T0) and P (T1), are calculated
as 1−

∑
k∈K q2k−1 and

∑
k∈K q2k−1, respectively. Then, we

have from (1) and LOPT ≤ LAIFV that

LOPT ≤ LT0 · P (T0) + LT1 · P (T1)

=

⎛

⎝
∑

k∈U\K

(q2k−1 + q2k) +
∑

k∈K

2q2k

⎞

⎠ ·
(
1−

∑

k∈K

q2k−1

)

+

⎛

⎝q2 +
∑

k∈U\K

(q2k−1 + q2k) +
∑

k∈K

2q2k

⎞

⎠ ·
∑

k∈K

q2k−1.

(8)

Fig. 5. Transformation of Tbase into T1.

Applying chain rules of entropy on THuffman from the root to
leaves gives the following decomposition of the source entropy
[5].

H(X) =
K−1∑

k=1

(q2k−1 + q2k)h

(
q2k

q2k−1 + q2k

)
. (9)

Thus, the redundancy of the optimal binary AIFV code, rAIFV,
defined by (2) is upper bounded from (8) and (9) as follows.

rAIFV ≤ LT0 · P (T0) + LT1 · P (T1)−H(X)

=

[
q1 + q2 − h

(
q2

q1 + q2

)]

+
∑

k∈K

[
2q2k − (q2k + q2k−1)h

(
q2k

q2k−1 + q2k

)
+ q2q2k−1

]

+
∑

k∈U\(K∪{1})

(q2k−1 + q2k)

(
1− h

(
q2k

q2k−1 + q2k

))
.

(10)

Note that in (10), we decompose the sum on U into three
terms each of which is summed over {1}, K, and U\(K∪{1}).
First, suppose k ∈ K. It follows from the definition of K that
2q2k < q2k−1. Thus, we can apply Lemma 2 with w1 :=
q2k−1, w2 := q2k and q := q2 ≤ 1

2 to each k ∈ K. Next,
suppose k ∈ U \ (K ∪ {1}). If q2k−1 is a leaf, q2k−1 ≤ 2q2k
holds since k /∈ K. If q2k−1 is not a leaf, then by Lemma 1,
q2k−1 ≤ 2q2k holds. In either case, q2k−1 ≤ 2q2k holds. Thus,
we can apply Lemma 3 to each k ∈ U \(K∪{1}). Combining
these with q1 + q2 = 1, we get

rAIFV ≤ 1− h(q1) +
∑

k∈K
q2(q2k−1 − q2k)

+
∑

k∈U\(K∪{1})

1

4
(q2k−1 − q2k)

< 1− h(q1) + q2

K−1∑

k=2

(q2k−1 − q2k) (11)

< 1− h(q1) + q2q3 (12)
≤ 1− h(q1) + q22 (13)
= q21 − 2q1 + 2− h(q1). (14)

Ineq. (11) holds since 1
4 < 1

3 ≤ 1− q1 = q2. Ineqs. (12) and
(13) hold since the sequence {qk} is non-increasing. ✷

Proof of Theorem 3. First, consider the case of 1
2 ≤ pmax ≤

−1+
√
5

2 . Since pmax = q1 for pmax ≥ 1
2 , it follows that 1

2 ≤

Fig. 1. An example of binary AIFV code trees.

Properties 1) and 2) indicate that a binary AIFV code allows
source symbols to be assigned to the incomplete internal
nodes. Properties 3) and 4) can be interpreted as constraints
on the tree structures to ensure that decoding delay is at most
two bits. Fig. 1 illustrates an example of a binary AIFV code
for X = {a, b, c}, where slave nodes are marked with squares.
It is easy to see that the trees satisfy all the properties of a
binary AIFV code.

Given a source sequence x1x2x3 · · · , an encoding procedure
of a binary AIFV code goes as follows.

1) Use T0 to encode the initial source symbol x1.
2) When xi is encoded by a leaf (resp. a master node), then

use T0 (resp. T1) to encode the next symbol xi+1.

Using a binary AIFV code of Fig. 1, a source sequence ‘aabac’
is encoded to ‘1000011’, where the code trees are visited in
the order of T0 → T1 → T0 → T0 → T1.

A codeword sequence y1y2y3 · · · ∈ {0, 1}∗ is decoded as
follows.

1) Use T0 to decode the initial source symbol x1.
2) Trace the codeword sequence as long as possible from

the root in the current code tree. Then, output the source
symbol assigned to the reached master node or leaf.

3) If the reached node is a leaf (resp. a master node), then
use T0 (resp. T1) to decode the next source symbol from
the current position on the codeword sequence.

The decoding process is guaranteed to visit the code trees in
the same order as the corresponding encoding process does [4].
The codeword sequence ‘1000011’ is indeed decoded to the
original source sequence ‘aabac’, using a sequence of trees,
T0, T1, T0, T0 and T1, in this order. Note that since the first
codeword ‘1’ on the code sequence cannot be traced on T0

of Fig. 1, we output ‘a’, which is assigned to the root of T0.
When all source symbols are assigned to leaves of T0, a binary
AIFV code reduces to an instantaneous FV code.

The following defines an average code length of a binary
AIFV code, denoted by LAIFV.

LAIFV = P (T0)LT0 + P (T1)LT1 , (1)

where P (T0) (resp. P (T1)) is a stationary probability of T0

(resp. T1), and LT0 (resp. LT1 ) is the average code length of
T0 (resp. T1).

Let LOPT be the average code length of the optimal binary
AIFV code for a given source. Then, the redundancy of

optimal binary AIFV code denoted by rAIFV, is defined as

rAIFV ≡ LOPT −H(X), (2)

where X is a random variable corresponding to the source. It
is shown in [4] how we can obtain optimal binary AIFV code
trees for a given source.

B. Sibling property of Huffman codes

Sibling property was first introduced in [5] as a structural
characterization of Huffman codes. Consider a K-ary source
and let THuffman denote the corresponding Huffman tree. Let
the weight of a leaf be defined as the probability of correspond-
ing source symbol. Also, let the weight of an internal node
be defined recursively as the sum of the probabilities of the
children. There are 2K−2 nodes (except the root) on THuffman.
Let q1, q2, . . . , q2K−2 be the weights of the nodes sorted in a
non-increasing order, so that q1 ≥ q2, · · · ≥ q2K−2. By a slight
abuse of notations, we identify qk with the corresponding node
itself in the rest of the paper.

We state the sibling property of Huffman codes, which will
play an important role in the later proofs of the redundancy
of optimal binary AIFV codes.

Definition 1 (Sibling property). A binary code tree has
the sibling property if there exists a sequence of nodes
q1, q2, . . . , q2K−2, such that for every k ∈ {1, . . . ,K − 1},
q2k and q2k−1 are sibling on the tree.

Theorem 1 ([5, Theorem 1]). A binary instantaneous code is
a Huffman code iff the code tree has the sibling property.

C. Redundancy upper bounds of Huffman codes

It is well-known that an upper bound on the redundancy
of Huffman codes is 1. Meanwhile, a lot of studies have
shown that a better bound on the redundancy can be obtained
when a source satisfies some predefined conditions. One such
condition concerns with the value of pmax [5]–[9], where
pmax is the probability of the most likely source symbol. The
following bound is proven by Gallager [5].

Theorem 2 ([5, Theorem 2]). For pmax ≥ 1
2 , the redundancy

of binary Huffman codes is upper bounded by 2 − pmax −
h(pmax), where h(·) is the binary entropy function.

Note that the bound provided by Theorem 2 is tight in the
sense that a source with probabilities (pmax, 1− pmax − δ, δ)
satisfies the bound with equality in the limit of δ → 0.

In Fig. 2, we summarize the upper bound results for
Huffman codes in terms of pmax. The bound is shown to
be tight for pmax ≥ 1

6 in [10]. We see from Fig. 2 that
the redundancy of Huffman codes approaches to 1 only when
source probabilities are extremely biased.

III. REDUNDANCY UPPER BOUNDS OF OPTIMAL BINARY
AIFV CODES

We have reviewed some upper bound results on the re-
dundancy of Huffman codes. In this section, we derive their
counterparts on binary AIFV codes, which directly suggests

Fig. 1. An example of binary AIFV code trees.

Properties 1) and 2) indicate that a binary AIFV code allows
source symbols to be assigned to the incomplete internal
nodes. Properties 3) and 4) can be interpreted as constraints
on the tree structures to ensure that decoding delay is at most
two bits. Fig. 1 illustrates an example of a binary AIFV code
for X = {a, b, c}, where slave nodes are marked with squares.
It is easy to see that the trees satisfy all the properties of a
binary AIFV code.

Given a source sequence x1x2x3 · · · , an encoding procedure
of a binary AIFV code goes as follows.

1) Use T0 to encode the initial source symbol x1.
2) When xi is encoded by a leaf (resp. a master node), then

use T0 (resp. T1) to encode the next symbol xi+1.

Using a binary AIFV code of Fig. 1, a source sequence ‘aabac’
is encoded to ‘1000011’, where the code trees are visited in
the order of T0 → T1 → T0 → T0 → T1.

A codeword sequence y1y2y3 · · · ∈ {0, 1}∗ is decoded as
follows.

1) Use T0 to decode the initial source symbol x1.
2) Trace the codeword sequence as long as possible from

the root in the current code tree. Then, output the source
symbol assigned to the reached master node or leaf.

3) If the reached node is a leaf (resp. a master node), then
use T0 (resp. T1) to decode the next source symbol from
the current position on the codeword sequence.

The decoding process is guaranteed to visit the code trees in
the same order as the corresponding encoding process does [4].
The codeword sequence ‘1000011’ is indeed decoded to the
original source sequence ‘aabac’, using a sequence of trees,
T0, T1, T0, T0 and T1, in this order. Note that since the first
codeword ‘1’ on the code sequence cannot be traced on T0

of Fig. 1, we output ‘a’, which is assigned to the root of T0.
When all source symbols are assigned to leaves of T0, a binary
AIFV code reduces to an instantaneous FV code.

The following defines an average code length of a binary
AIFV code, denoted by LAIFV.

LAIFV = P (T0)LT0 + P (T1)LT1 , (1)

where P (T0) (resp. P (T1)) is a stationary probability of T0

(resp. T1), and LT0 (resp. LT1 ) is the average code length of
T0 (resp. T1).

Let LOPT be the average code length of the optimal binary
AIFV code for a given source. Then, the redundancy of

optimal binary AIFV code denoted by rAIFV, is defined as

rAIFV ≡ LOPT −H(X), (2)

where X is a random variable corresponding to the source. It
is shown in [4] how we can obtain optimal binary AIFV code
trees for a given source.

B. Sibling property of Huffman codes

Sibling property was first introduced in [5] as a structural
characterization of Huffman codes. Consider a K-ary source
and let THuffman denote the corresponding Huffman tree. Let
the weight of a leaf be defined as the probability of correspond-
ing source symbol. Also, let the weight of an internal node
be defined recursively as the sum of the probabilities of the
children. There are 2K−2 nodes (except the root) on THuffman.
Let q1, q2, . . . , q2K−2 be the weights of the nodes sorted in a
non-increasing order, so that q1 ≥ q2, · · · ≥ q2K−2. By a slight
abuse of notations, we identify qk with the corresponding node
itself in the rest of the paper.

We state the sibling property of Huffman codes, which will
play an important role in the later proofs of the redundancy
of optimal binary AIFV codes.

Definition 1 (Sibling property). A binary code tree has
the sibling property if there exists a sequence of nodes
q1, q2, . . . , q2K−2, such that for every k ∈ {1, . . . ,K − 1},
q2k and q2k−1 are sibling on the tree.

Theorem 1 ([5, Theorem 1]). A binary instantaneous code is
a Huffman code iff the code tree has the sibling property.

C. Redundancy upper bounds of Huffman codes

It is well-known that an upper bound on the redundancy
of Huffman codes is 1. Meanwhile, a lot of studies have
shown that a better bound on the redundancy can be obtained
when a source satisfies some predefined conditions. One such
condition concerns with the value of pmax [5]–[9], where
pmax is the probability of the most likely source symbol. The
following bound is proven by Gallager [5].

Theorem 2 ([5, Theorem 2]). For pmax ≥ 1
2 , the redundancy

of binary Huffman codes is upper bounded by 2 − pmax −
h(pmax), where h(·) is the binary entropy function.

Note that the bound provided by Theorem 2 is tight in the
sense that a source with probabilities (pmax, 1− pmax − δ, δ)
satisfies the bound with equality in the limit of δ → 0.

In Fig. 2, we summarize the upper bound results for
Huffman codes in terms of pmax. The bound is shown to
be tight for pmax ≥ 1

6 in [10]. We see from Fig. 2 that
the redundancy of Huffman codes approaches to 1 only when
source probabilities are extremely biased.

III. REDUNDANCY UPPER BOUNDS OF OPTIMAL BINARY
AIFV CODES

We have reviewed some upper bound results on the re-
dundancy of Huffman codes. In this section, we derive their
counterparts on binary AIFV codes, which directly suggests

:	  size	  of	  source	  alphabet	
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Algorithm 1 Transformation of THuffman into Tbase.

for sibling index k = 2, . . . ,K − 1 do
if q2k−1 is a leaf and 2q2k < q2k−1 then

Convert the sibling pair (q2k, q2k−1) into a master node and its grandchild. · · · (∗)
end if

end for

Lemma 2. Assume 0 < 2w2 < w1 and let q ∈
[
0, 1

2

]
be arbitrary. Then,

2w2 − (w1 + w2)h

(
w2

w1 + w2

)
+ qw1 < q (w1 − w2) . (9)

Proof. Let c ≡ w1
w2

> 2 and define g(x) ≡ h(x)− 2x. Subtracting the LHS of (9) from the RHS, we get

−qw2 − 2w2 + (1 + c)w2 ·
(
g

(
1

1 + c

)
+

2

1 + c

)

= w2 ·
(
−q + (1 + c) · g

(
1

1 + c

))

≥ w2 ·
(
−1

2
+ (1 + c) · g

(
1

1 + c

))

> 0. (10)

The last inequality follows from infc>2(1 + c)g( 1
1+c ) = 0.754 · · · > 1

2 . ✷

Lemma 3. If q2k−1 ≤ 2q2k, then

(q2k−1 + q2k)

(
1− h

(
q2k

q2k−1 + q2k

))
≤ 1

4
(q2k−1 − q2k) . (11)

Proof. Since q2k ≤ q2k−1 ≤ 2q2k, it follows that 1
3 ≤ q2k

q2k−1+q2k
≤ 1

2 . Further, since 1
2x + 3

4 ≤ h(x) holds for
1
3 ≤ x ≤ 1

2 ,

(q2k−1 + q2k)

(
1− h

(
q2k

q2k−1 + q2k

))

≤ (q2k−1 + q2k)

(
1− q2k

2(q2k−1 + q2k)
− 3

4

)

=
1

4
(q2k−1 − q2k). (12)

✷

Now, consider a K-ary source and let THuffman be a Huffman code tree for the source. We transform THuffman

into a new tree Tbase using Algorithm 1. The conversion shown by (∗) in Algorithm 1 is illustrated in Fig. 8. It

is an operation that lifts up q2k−1 to make a master node and pulls down the entire subtree of q2k to one lower

level. Two nodes, q2k−1 and q2k, are then connected by code symbols ‘00’. Let K be the set of indices whose

corresponding sibling pairs are converted by Algorithm 1 and let U denote the set of indices of entire sibling pairs,
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Algorithm 1 Transformation of THuffman into Tbase.

for k = 2, . . . ,K − 1 do
if q2k−1 is a leaf and 2q2k < q2k−1 then

Convert the sibling pair (q2k, q2k−1) into a master node
and its grandchild. · · · (∗)

end if
end for

Fig. 4. The conversion from a sibling pair (q2k−1, q2k) into a master node
and its grandchild.

Now, consider a K-ary source and let THuffman be the cor-
responding Huffman code tree. We transform THuffman into a
new tree Tbase using Algorithm 1. The conversion shown by
(∗) in Algorithm 1 is illustrated in Fig. 4. It is an operation
that lifts up q2k−1 to make a master node and pulls down the
entire subtree of q2k to one lower level. Two nodes, q2k−1 and
q2k, are then connected by code symbols ‘00’. Let K be the
set of indices whose corresponding sibling pairs are converted
by Algorithm 1 and let U denote the set of indices of entire
sibling pairs, so that

K = {k ∈ {2, . . . ,K − 1}|q2k−1 is a leaf and 2q2k < q2k−1},
U = {1, . . . ,K − 1}.

Lemma 4. For 1
2 ≤ q1 ≤ 2

3 , the redundancy of optimal binary
AIFV codes is upper bounded by q21 − 2q1 + 2− h(q1).

Proof. Let T0 be Tbase and transform Tbase into T1 by the
operation described in Fig. 5. It is easy to see that T0 and T1

are valid binary AIFV code trees, satisfying all the properties
mentioned in Section II-A.

The total probability assigned to master nodes is∑
k∈K q2k−1 for both T0 and T1. Thus, it follows from

the encoding procedure 2) in Section II-A that the tran-
sition probabilities, P (T1|T0) and P (T0|T1), are given by∑

k∈K q2k−1 and 1 −
∑

k∈K q2k−1, respectively. Therefore,
the stationary probabilities, P (T0) and P (T1), are calculated
as 1−

∑
k∈K q2k−1 and

∑
k∈K q2k−1, respectively. Then, we

have from (1) and LOPT ≤ LAIFV that

LOPT ≤ LT0 · P (T0) + LT1 · P (T1)

=

⎛

⎝
∑

k∈U\K

(q2k−1 + q2k) +
∑

k∈K

2q2k

⎞

⎠ ·
(
1−

∑

k∈K

q2k−1

)

+

⎛

⎝q2 +
∑

k∈U\K

(q2k−1 + q2k) +
∑

k∈K

2q2k

⎞

⎠ ·
∑

k∈K

q2k−1.

(8)

Fig. 5. Transformation of Tbase into T1.

Applying chain rules of entropy on THuffman from the root to
leaves gives the following decomposition of the source entropy
[5].

H(X) =
K−1∑

k=1

(q2k−1 + q2k)h

(
q2k

q2k−1 + q2k

)
. (9)

Thus, the redundancy of the optimal binary AIFV code, rAIFV,
defined by (2) is upper bounded from (8) and (9) as follows.

rAIFV ≤ LT0 · P (T0) + LT1 · P (T1)−H(X)

=

[
q1 + q2 − h

(
q2

q1 + q2

)]

+
∑

k∈K

[
2q2k − (q2k + q2k−1)h

(
q2k

q2k−1 + q2k

)
+ q2q2k−1

]

+
∑

k∈U\(K∪{1})

(q2k−1 + q2k)

(
1− h

(
q2k

q2k−1 + q2k

))
.

(10)

Note that in (10), we decompose the sum on U into three
terms each of which is summed over {1}, K, and U\(K∪{1}).
First, suppose k ∈ K. It follows from the definition of K that
2q2k < q2k−1. Thus, we can apply Lemma 2 with w1 :=
q2k−1, w2 := q2k and q := q2 ≤ 1

2 to each k ∈ K. Next,
suppose k ∈ U \ (K ∪ {1}). If q2k−1 is a leaf, q2k−1 ≤ 2q2k
holds since k /∈ K. If q2k−1 is not a leaf, then by Lemma 1,
q2k−1 ≤ 2q2k holds. In either case, q2k−1 ≤ 2q2k holds. Thus,
we can apply Lemma 3 to each k ∈ U \(K∪{1}). Combining
these with q1 + q2 = 1, we get

rAIFV ≤ 1− h(q1) +
∑

k∈K
q2(q2k−1 − q2k)

+
∑

k∈U\(K∪{1})

1

4
(q2k−1 − q2k)

< 1− h(q1) + q2

K−1∑

k=2

(q2k−1 − q2k) (11)

< 1− h(q1) + q2q3 (12)
≤ 1− h(q1) + q22 (13)
= q21 − 2q1 + 2− h(q1). (14)
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We can apply Lemma 2 with w1 := q2k−1, w2 := q2k and
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since the sequence {qk} is non-increasing.

To prove that the derived bound is tight, it is sufficient to
show that there exists a source for every pmax ≥ 1

2 such that
the source attains the bound arbitrarily closely. In particular,
we show that a source with probabilities (pmax, 1−pmax−δ, δ)
satisfies the bound with equality in the limit of δ → 0. Note
that for |X | = 3, there exist only four possible tree structures
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Fig. 7. The bound achieving trees.

for each code tree, T0 and T1. By examining all the possible
combinations of the structures, it can be shown that the optimal
binary AIFV codes are as illustrated in Fig. 7 for each range
of pmax. We see that the redundancy of the codes coincides
with the bound in the limit of δ → 0. ✷

Proof of Theorem 4. In the case of pmax < 1
2 , we note that

|X | ≥ 3 and thus, q1 must be an internal node. It follows
from Lemma 1 that q1 ≤ 2q2. Since q1 + q2 = 1, we get
1
2 ≤ q1 ≤ 2

3 . By Lemma 4, we obtain

rAIFV < max
1
2≤q1≤ 2

3

q21 − 2q1 + 2− h(q1) =
1

4
. (19)

✷
V. CONCLUSION

In this paper, we considered binary AIFV codes that use two
code trees and decoding delay is at most two bits. We showed
that the redundancy of the codes is at most 1

2 . Furthermore,
we can expect that if the codes are allowed to use more trees
and the decoding delay can be more than two bits, the upper
bound on the redundancy can further be improved. It is also
interesting to derive tighter upper bounds on the redundancy
of optimal binary AIFV codes for pmax < 1

2 , and compare
them to their Huffman counterparts.
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Algorithm 1 Transformation of THuffman into Tbase.

for k = 2, . . . ,K − 1 do
if q2k−1 is a leaf and 2q2k < q2k−1 then

Convert the sibling pair (q2k, q2k−1) into a master node
and its grandchild. · · · (∗)

end if
end for

Fig. 4. The conversion from a sibling pair (q2k−1, q2k) into a master node
and its grandchild.

Now, consider a K-ary source and let THuffman be the cor-
responding Huffman code tree. We transform THuffman into a
new tree Tbase using Algorithm 1. The conversion shown by
(∗) in Algorithm 1 is illustrated in Fig. 4. It is an operation
that lifts up q2k−1 to make a master node and pulls down the
entire subtree of q2k to one lower level. Two nodes, q2k−1 and
q2k, are then connected by code symbols ‘00’. Let K be the
set of indices whose corresponding sibling pairs are converted
by Algorithm 1 and let U denote the set of indices of entire
sibling pairs, so that

K = {k ∈ {2, . . . ,K − 1}|q2k−1 is a leaf and 2q2k < q2k−1},
U = {1, . . . ,K − 1}.

Lemma 4. For 1
2 ≤ q1 ≤ 2

3 , the redundancy of optimal binary
AIFV codes is upper bounded by q21 − 2q1 + 2− h(q1).

Proof. Let T0 be Tbase and transform Tbase into T1 by the
operation described in Fig. 5. It is easy to see that T0 and T1

are valid binary AIFV code trees, satisfying all the properties
mentioned in Section II-A.

The total probability assigned to master nodes is∑
k∈K q2k−1 for both T0 and T1. Thus, it follows from

the encoding procedure 2) in Section II-A that the tran-
sition probabilities, P (T1|T0) and P (T0|T1), are given by∑

k∈K q2k−1 and 1 −
∑

k∈K q2k−1, respectively. Therefore,
the stationary probabilities, P (T0) and P (T1), are calculated
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∑
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have from (1) and LOPT ≤ LAIFV that
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⎛
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Fig. 5. Transformation of Tbase into T1.

Applying chain rules of entropy on THuffman from the root to
leaves gives the following decomposition of the source entropy
[5].
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Note that in (10), we decompose the sum on U into three
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(13) hold since the sequence {qk} is non-increasing. ✷

Proof of Theorem 3. First, consider the case of 1
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proof follows the same line as the proof of Lemma 4. First,
transform Tbase into T0 by the operation depicted in Fig. 6
and also transform Tbase into T1 as illustrated in Fig. 5.

Then, T0 and T1 are valid binary AIFV code trees. In
the same way as Lemma 4, we can show that the station-
ary probabilities are given by P (T0) =
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We can apply Lemma 2 with w1 := q2k−1, w2 := q2k and
q := q1

1+q1
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2 to the second term of (15). Also, we can apply
Lemma 3 to the third term of (15). Combining with q1+q2 = 1
and q1 = pmax, we get
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Ineq. (16) holds since 1
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. Ineq. (17) holds
since the sequence {qk} is non-increasing.

To prove that the derived bound is tight, it is sufficient to
show that there exists a source for every pmax ≥ 1

2 such that
the source attains the bound arbitrarily closely. In particular,
we show that a source with probabilities (pmax, 1−pmax−δ, δ)
satisfies the bound with equality in the limit of δ → 0. Note
that for |X | = 3, there exist only four possible tree structures
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for each code tree, T0 and T1. By examining all the possible
combinations of the structures, it can be shown that the optimal
binary AIFV codes are as illustrated in Fig. 7 for each range
of pmax. We see that the redundancy of the codes coincides
with the bound in the limit of δ → 0. ✷

Proof of Theorem 4. In the case of pmax < 1
2 , we note that

|X | ≥ 3 and thus, q1 must be an internal node. It follows
from Lemma 1 that q1 ≤ 2q2. Since q1 + q2 = 1, we get
1
2 ≤ q1 ≤ 2

3 . By Lemma 4, we obtain

rAIFV < max
1
2≤q1≤ 2

3

q21 − 2q1 + 2− h(q1) =
1

4
. (19)

✷
V. CONCLUSION

In this paper, we considered binary AIFV codes that use two
code trees and decoding delay is at most two bits. We showed
that the redundancy of the codes is at most 1

2 . Furthermore,
we can expect that if the codes are allowed to use more trees
and the decoding delay can be more than two bits, the upper
bound on the redundancy can further be improved. It is also
interesting to derive tighter upper bounds on the redundancy
of optimal binary AIFV codes for pmax < 1

2 , and compare
them to their Huffman counterparts.
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for each code tree, T0 and T1. By examining all the possible
combinations of the structures, it can be shown that the optimal
binary AIFV codes are as illustrated in Fig. 7 for each range
of pmax. We see that the redundancy of the codes coincides
with the bound in the limit of δ → 0. ✷

Proof of Theorem 4. In the case of pmax < 1
2 , we note that

|X | ≥ 3 and thus, q1 must be an internal node. It follows
from Lemma 1 that q1 ≤ 2q2. Since q1 + q2 = 1, we get
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and the decoding delay can be more than two bits, the upper
bound on the redundancy can further be improved. It is also
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1 + q1

− h

(
q2

q1 + q2

)]

+
∑

k∈K

[
2q2k − (q2k + q2k−1)h

(
q2k

q2k−1 + q2k

)
+

q1q2k−1

1 + q1

]

+
∑

k∈U\(K∪{1})

(q2k−1 + q2k)

(
1− h

(
q2k

q2k−1 + q2k

))
.

(15)

We can apply Lemma 2 with w1 := q2k−1, w2 := q2k and
q := q1

1+q1
≤ 1

2 to the second term of (15). Also, we can apply
Lemma 3 to the third term of (15). Combining with q1+q2 = 1
and q1 = pmax, we get

rAIFV ≤
[
2(1− q1) +

q21
1 + q1

− h(q1)

]

+
∑

k∈K

q1
1 + q1

(q2k−1 − q2k) +
∑

k∈U\(K∪{1})

1
4
(q2k−1 − q2k)

≤ 2(1− q1) +
q21

1 + q1
− h(q1) +

q1
1 + q1

K−1∑

k=2

(q2k−1 − q2k)

(16)

≤ 2(1− q1) +
q21

1 + q1
− h(q1) +

q1q2
1 + q1

(17)

=
−2p2max + pmax + 2

1 + pmax
− h(pmax). (18)

Ineq. (16) holds since 1
4 < 3−

√
5

2 ≤ q1
1+q1

. Ineq. (17) holds
since the sequence {qk} is non-increasing.

To prove that the derived bound is tight, it is sufficient to
show that there exists a source for every pmax ≥ 1

2 such that
the source attains the bound arbitrarily closely. In particular,
we show that a source with probabilities (pmax, 1−pmax−δ, δ)
satisfies the bound with equality in the limit of δ → 0. Note
that for |X | = 3, there exist only four possible tree structures

(a) 1
2 ≤ pmax ≤

√
5−1
2 . (b)

√
5−1
2 ≤ pmax ≤ 1.

Fig. 7. The bound achieving trees.

for each code tree, T0 and T1. By examining all the possible
combinations of the structures, it can be shown that the optimal
binary AIFV codes are as illustrated in Fig. 7 for each range
of pmax. We see that the redundancy of the codes coincides
with the bound in the limit of δ → 0. ✷

Proof of Theorem 4. In the case of pmax < 1
2 , we note that

|X | ≥ 3 and thus, q1 must be an internal node. It follows
from Lemma 1 that q1 ≤ 2q2. Since q1 + q2 = 1, we get
1
2 ≤ q1 ≤ 2

3 . By Lemma 4, we obtain

rAIFV < max
1
2≤q1≤ 2

3

q21 − 2q1 + 2− h(q1) =
1

4
. (19)

✷
V. CONCLUSION

In this paper, we considered binary AIFV codes that use two
code trees and decoding delay is at most two bits. We showed
that the redundancy of the codes is at most 1

2 . Furthermore,
we can expect that if the codes are allowed to use more trees
and the decoding delay can be more than two bits, the upper
bound on the redundancy can further be improved. It is also
interesting to derive tighter upper bounds on the redundancy
of optimal binary AIFV codes for pmax < 1

2 , and compare
them to their Huffman counterparts.
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Algorithm 1 Transformation of THuffman into Tbase.

for k = 2, . . . ,K − 1 do
if q2k−1 is a leaf and 2q2k < q2k−1 then

Convert the sibling pair (q2k, q2k−1) into a master node
and its grandchild. · · · (∗)

end if
end for

Fig. 4. The conversion from a sibling pair (q2k−1, q2k) into a master node
and its grandchild.

Now, consider a K-ary source and let THuffman be the cor-
responding Huffman code tree. We transform THuffman into a
new tree Tbase using Algorithm 1. The conversion shown by
(∗) in Algorithm 1 is illustrated in Fig. 4. It is an operation
that lifts up q2k−1 to make a master node and pulls down the
entire subtree of q2k to one lower level. Two nodes, q2k−1 and
q2k, are then connected by code symbols ‘00’. Let K be the
set of indices whose corresponding sibling pairs are converted
by Algorithm 1 and let U denote the set of indices of entire
sibling pairs, so that

K = {k ∈ {2, . . . ,K − 1}|q2k−1 is a leaf and 2q2k < q2k−1},
U = {1, . . . ,K − 1}.

Lemma 4. For 1
2 ≤ q1 ≤ 2

3 , the redundancy of optimal binary
AIFV codes is upper bounded by q21 − 2q1 + 2− h(q1).

Proof. Let T0 be Tbase and transform Tbase into T1 by the
operation described in Fig. 5. It is easy to see that T0 and T1

are valid binary AIFV code trees, satisfying all the properties
mentioned in Section II-A.

The total probability assigned to master nodes is∑
k∈K q2k−1 for both T0 and T1. Thus, it follows from

the encoding procedure 2) in Section II-A that the tran-
sition probabilities, P (T1|T0) and P (T0|T1), are given by∑

k∈K q2k−1 and 1 −
∑

k∈K q2k−1, respectively. Therefore,
the stationary probabilities, P (T0) and P (T1), are calculated
as 1−

∑
k∈K q2k−1 and

∑
k∈K q2k−1, respectively. Then, we

have from (1) and LOPT ≤ LAIFV that

LOPT ≤ LT0 · P (T0) + LT1 · P (T1)

=

⎛

⎝
∑

k∈U\K

(q2k−1 + q2k) +
∑

k∈K

2q2k

⎞

⎠ ·
(
1−

∑

k∈K

q2k−1

)

+

⎛

⎝q2 +
∑

k∈U\K

(q2k−1 + q2k) +
∑

k∈K

2q2k

⎞

⎠ ·
∑

k∈K

q2k−1.

(8)

Fig. 5. Transformation of Tbase into T1.

Applying chain rules of entropy on THuffman from the root to
leaves gives the following decomposition of the source entropy
[5].

H(X) =
K−1∑

k=1

(q2k−1 + q2k)h

(
q2k

q2k−1 + q2k

)
. (9)

Thus, the redundancy of the optimal binary AIFV code, rAIFV,
defined by (2) is upper bounded from (8) and (9) as follows.

rAIFV ≤ LT0 · P (T0) + LT1 · P (T1)−H(X)

=

[
q1 + q2 − h

(
q2

q1 + q2

)]

+
∑

k∈K

[
2q2k − (q2k + q2k−1)h

(
q2k

q2k−1 + q2k

)
+ q2q2k−1

]

+
∑

k∈U\(K∪{1})

(q2k−1 + q2k)

(
1− h

(
q2k

q2k−1 + q2k

))
.

(10)

Note that in (10), we decompose the sum on U into three
terms each of which is summed over {1}, K, and U\(K∪{1}).
First, suppose k ∈ K. It follows from the definition of K that
2q2k < q2k−1. Thus, we can apply Lemma 2 with w1 :=
q2k−1, w2 := q2k and q := q2 ≤ 1

2 to each k ∈ K. Next,
suppose k ∈ U \ (K ∪ {1}). If q2k−1 is a leaf, q2k−1 ≤ 2q2k
holds since k /∈ K. If q2k−1 is not a leaf, then by Lemma 1,
q2k−1 ≤ 2q2k holds. In either case, q2k−1 ≤ 2q2k holds. Thus,
we can apply Lemma 3 to each k ∈ U \(K∪{1}). Combining
these with q1 + q2 = 1, we get

rAIFV ≤ 1− h(q1) +
∑

k∈K
q2(q2k−1 − q2k)

+
∑

k∈U\(K∪{1})

1

4
(q2k−1 − q2k)

< 1− h(q1) + q2

K−1∑

k=2

(q2k−1 − q2k) (11)

< 1− h(q1) + q2q3 (12)
≤ 1− h(q1) + q22 (13)
= q21 − 2q1 + 2− h(q1). (14)

Ineq. (11) holds since 1
4 < 1

3 ≤ 1− q1 = q2. Ineqs. (12) and
(13) hold since the sequence {qk} is non-increasing. ✷

Proof of Theorem 3. First, consider the case of 1
2 ≤ pmax ≤

−1+
√
5

2 . Since pmax = q1 for pmax ≥ 1
2 , it follows that 1

2 ≤

Fig. 6. Transformation of Tbase into T0.

q1 ≤ −1+
√
5

2 < 2
3 . Applying Lemma 4, we get the upper

bound on the redundancy as p2max − 2pmax + 2− h(pmax).
Next, we prove the bound for −1+

√
5

2 ≤ pmax < 1. The
proof follows the same line as the proof of Lemma 4. First,
transform Tbase into T0 by the operation depicted in Fig. 6
and also transform Tbase into T1 as illustrated in Fig. 5.

Then, T0 and T1 are valid binary AIFV code trees. In
the same way as Lemma 4, we can show that the station-
ary probabilities are given by P (T0) =

1−
∑

k∈K q2k−1

1+q1
and

P (T1) =
q1+

∑
k∈K q2k−1

1+q1
. As before, the redundancy of the

optimal binary AIFV code can be upper bounded as follows.

rAIFV ≤ LT0 · P (T0) + LT1 · P (T1)−H(X)

=

[
2q2 +

q21
1 + q1

− h

(
q2

q1 + q2

)]

+
∑

k∈K

[
2q2k − (q2k + q2k−1)h

(
q2k

q2k−1 + q2k

)
+

q1q2k−1

1 + q1

]

+
∑

k∈U\(K∪{1})

(q2k−1 + q2k)

(
1− h

(
q2k

q2k−1 + q2k

))
.

(15)

We can apply Lemma 2 with w1 := q2k−1, w2 := q2k and
q := q1

1+q1
≤ 1

2 to the second term of (15). Also, we can apply
Lemma 3 to the third term of (15). Combining with q1+q2 = 1
and q1 = pmax, we get

rAIFV ≤
[
2(1− q1) +

q21
1 + q1

− h(q1)

]

+
∑

k∈K

q1
1 + q1

(q2k−1 − q2k) +
∑

k∈U\(K∪{1})

1
4
(q2k−1 − q2k)

≤ 2(1− q1) +
q21

1 + q1
− h(q1) +

q1
1 + q1

K−1∑

k=2

(q2k−1 − q2k)

(16)

≤ 2(1− q1) +
q21

1 + q1
− h(q1) +

q1q2
1 + q1

(17)

=
−2p2max + pmax + 2

1 + pmax
− h(pmax). (18)

Ineq. (16) holds since 1
4 < 3−

√
5

2 ≤ q1
1+q1

. Ineq. (17) holds
since the sequence {qk} is non-increasing.

To prove that the derived bound is tight, it is sufficient to
show that there exists a source for every pmax ≥ 1

2 such that
the source attains the bound arbitrarily closely. In particular,
we show that a source with probabilities (pmax, 1−pmax−δ, δ)
satisfies the bound with equality in the limit of δ → 0. Note
that for |X | = 3, there exist only four possible tree structures

(a) 1
2 ≤ pmax ≤

√
5−1
2 . (b)

√
5−1
2 ≤ pmax ≤ 1.

Fig. 7. The bound achieving trees.

for each code tree, T0 and T1. By examining all the possible
combinations of the structures, it can be shown that the optimal
binary AIFV codes are as illustrated in Fig. 7 for each range
of pmax. We see that the redundancy of the codes coincides
with the bound in the limit of δ → 0. ✷

Proof of Theorem 4. In the case of pmax < 1
2 , we note that

|X | ≥ 3 and thus, q1 must be an internal node. It follows
from Lemma 1 that q1 ≤ 2q2. Since q1 + q2 = 1, we get
1
2 ≤ q1 ≤ 2

3 . By Lemma 4, we obtain

rAIFV < max
1
2≤q1≤ 2

3

q21 − 2q1 + 2− h(q1) =
1

4
. (19)

✷
V. CONCLUSION

In this paper, we considered binary AIFV codes that use two
code trees and decoding delay is at most two bits. We showed
that the redundancy of the codes is at most 1

2 . Furthermore,
we can expect that if the codes are allowed to use more trees
and the decoding delay can be more than two bits, the upper
bound on the redundancy can further be improved. It is also
interesting to derive tighter upper bounds on the redundancy
of optimal binary AIFV codes for pmax < 1

2 , and compare
them to their Huffman counterparts.
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Fig. 2. The redundancy upper bounds of Huffman codes in terms of pmax.

Fig. 3. Comparison on the redundancy upper bounds between binary AIFV
codes and Huffman codes in terms of pmax.

superiority of binary AIFV codes over Huffman codes in terms
of compression ratio.

Theorem 3. For pmax ≥ 1
2 , the redundancy of optimal binary

AIFV codes is upper bounded by f(pmax), where f(x) is
defined as follows.

f(x) =

{
x2 − 2x+ 2− h(x) if 1

2 ≤ x ≤ −1+
√
5

2 ,
−2x2+x+2

1+x − h(x) if −1+
√
5

2 ≤ x < 1.
(3)

The above bound is tight in the sense that there exists a source
distribution for any ϵ > 0 such that the redundancy is larger
than f(pmax)− ϵ.

Fig. 3 compares the upper bounds given by Theorems 2 and
3. We see that the upper bound on the redundancy of optimal
binary AIFV codes is smaller than that of Huffman codes for
every pmax ≥ 1

2 .
We also get Theorem 4, covering the case of pmax < 1

2 .

Theorem 4. For pmax < 1
2 , the redundancy of optimal binary

AIFV codes is at most 1
4 .

The bound given by Theorem 4 is not necessarily tight. Yet
the derived bound is sufficient to prove Corollary 1, which
follows immediately from Theorems 3 and 4.

Corollary 1. The redundancy of optimal binary AIFV codes
is upper bounded by 1

2 for any source.

Note that the bound given by Corollary 1 is tight and is
the same upper bound as that of Huffman codes for X 2. In
fact, it is empirically shown that for some sources, a binary
AIFV code can beat a Huffman code for X 2 [4]. Meanwhile,
in terms of memory efficiency, a binary AIFV code only
requires O(K) for storing code trees, while a Huffman code
for X 2 needs O(K2). This suggests that a binary AIFV code

is more memory efficient than a Huffman code for X 2, while
maintaining competitive compression performance against a
Huffman code for X 2.

IV. PROOFS

We start with proving Theorem 3. The key to the proof is to
transform a Huffman code tree into binary AIFV code trees.
Then, we can utilize the structural property of the Huffman
tree, namely the sibling property, in evaluating the redundancy
of the binary AIFV code. For the notations on the sibling
property, see Section II-B. We first prepare three lemmas,
which provide useful inequalities for the later evaluation of
the bounds.

Lemma 1. Consider a Huffman tree and suppose that q2k−1

is not a leaf. Then, q2k−1 ≤ 2q2k holds.

Proof. Let q′1 and q′2 be children of q2k−1. In the construction
of the Huffman tree, q′1 and q′2 are merged before q2k−1 and
q2k are merged. Thus, q′1 ≤ q2k and q′2 ≤ q2k hold. Therefore,
we get q2k−1 = q′1 + q′2 ≤ 2q2k. ✷

Lemma 2. Assume 0 < 2w2 < w1 and let q ∈
[
0, 1

2

]
be

arbitrary. Then,

2w2 − (w1 + w2)h

(
w2

w1 + w2

)
+ qw1

< q (w1 − w2) . (4)

Proof. Let c ≡ w1
w2

> 2 and define g(x) ≡ h(x) − 2x.
Subtracting the LHS of (4) from the RHS, we get

−qw2 − 2w2 + (1 + c)w2 ·
(
g

(
1

1 + c

)
+

2

1 + c

)

= w2 ·
(
−q + (1 + c) · g

(
1

1 + c

))

≥ w2 ·
(
−1

2
+ (1 + c) · g

(
1

1 + c

))

> 0. (5)

The last inequality follows from infc>2(1 + c)g( 1
1+c ) =

0.754 · · · > 1
2 . ✷

Lemma 3. If q2k−1 ≤ 2q2k, then

(q2k−1 + q2k)

(
1− h

(
q2k

q2k−1 + q2k

))
≤ 1

4
(q2k−1 − q2k) . (6)

Proof. Since q2k ≤ q2k−1 ≤ 2q2k, it follows that 1
3 ≤

q2k
q2k−1+q2k

≤ 1
2 . Further, since 1

2x + 3
4 ≤ h(x) holds for

1
3 ≤ x ≤ 1

2 ,

(q2k−1 + q2k)

(
1− h

(
q2k

q2k−1 + q2k

))

≤ (q2k−1 + q2k)

(
1− q2k

2(q2k−1 + q2k)
− 3

4

)

=
1

4
(q2k−1 − q2k). (7)

✷

Why?	
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Fig. 6. Transformation of Tbase into T0.

q1 ≤ −1+
√
5

2 < 2
3 . Applying Lemma 4, we get the upper

bound on the redundancy as p2max − 2pmax + 2− h(pmax).
Next, we prove the bound for −1+

√
5

2 ≤ pmax < 1. The
proof follows the same line as the proof of Lemma 4. First,
transform Tbase into T0 by the operation depicted in Fig. 6
and also transform Tbase into T1 as illustrated in Fig. 5.

Then, T0 and T1 are valid binary AIFV code trees. In
the same way as Lemma 4, we can show that the station-
ary probabilities are given by P (T0) =

1−
∑

k∈K q2k−1

1+q1
and

P (T1) =
q1+

∑
k∈K q2k−1

1+q1
. As before, the redundancy of the

optimal binary AIFV code can be upper bounded as follows.

rAIFV ≤ LT0 · P (T0) + LT1 · P (T1)−H(X)

=

[
2q2 +

q21
1 + q1

− h

(
q2

q1 + q2

)]

+
∑

k∈K

[
2q2k − (q2k + q2k−1)h

(
q2k

q2k−1 + q2k

)
+

q1q2k−1

1 + q1

]

+
∑

k∈U\(K∪{1})

(q2k−1 + q2k)

(
1− h

(
q2k

q2k−1 + q2k

))
.

(15)

We can apply Lemma 2 with w1 := q2k−1, w2 := q2k and
q := q1

1+q1
≤ 1

2 to the second term of (15). Also, we can apply
Lemma 3 to the third term of (15). Combining with q1+q2 = 1
and q1 = pmax, we get

rAIFV ≤
[
2(1− q1) +

q21
1 + q1

− h(q1)

]

+
∑

k∈K

q1
1 + q1

(q2k−1 − q2k) +
∑

k∈U\(K∪{1})

1
4
(q2k−1 − q2k)

≤ 2(1− q1) +
q21

1 + q1
− h(q1) +

q1
1 + q1

K−1∑

k=2

(q2k−1 − q2k)

(16)

≤ 2(1− q1) +
q21

1 + q1
− h(q1) +

q1q2
1 + q1

(17)

=
−2p2max + pmax + 2

1 + pmax
− h(pmax). (18)

Ineq. (16) holds since 1
4 < 3−

√
5

2 ≤ q1
1+q1

. Ineq. (17) holds
since the sequence {qk} is non-increasing.

To prove that the derived bound is tight, it is sufficient to
show that there exists a source for every pmax ≥ 1

2 such that
the source attains the bound arbitrarily closely. In particular,
we show that a source with probabilities (pmax, 1−pmax−δ, δ)
satisfies the bound with equality in the limit of δ → 0. Note
that for |X | = 3, there exist only four possible tree structures

(a) 1
2 ≤ pmax ≤

√
5−1
2 . (b)

√
5−1
2 ≤ pmax ≤ 1.

Fig. 7. The bound achieving trees.

for each code tree, T0 and T1. By examining all the possible
combinations of the structures, it can be shown that the optimal
binary AIFV codes are as illustrated in Fig. 7 for each range
of pmax. We see that the redundancy of the codes coincides
with the bound in the limit of δ → 0. ✷

Proof of Theorem 4. In the case of pmax < 1
2 , we note that

|X | ≥ 3 and thus, q1 must be an internal node. It follows
from Lemma 1 that q1 ≤ 2q2. Since q1 + q2 = 1, we get
1
2 ≤ q1 ≤ 2

3 . By Lemma 4, we obtain

rAIFV < max
1
2≤q1≤ 2

3

q21 − 2q1 + 2− h(q1) =
1

4
. (19)

✷
V. CONCLUSION

In this paper, we considered binary AIFV codes that use two
code trees and decoding delay is at most two bits. We showed
that the redundancy of the codes is at most 1

2 . Furthermore,
we can expect that if the codes are allowed to use more trees
and the decoding delay can be more than two bits, the upper
bound on the redundancy can further be improved. It is also
interesting to derive tighter upper bounds on the redundancy
of optimal binary AIFV codes for pmax < 1

2 , and compare
them to their Huffman counterparts.
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√
5
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∑

k∈K q2k−1

1+q1
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P (T1) =
q1+

∑
k∈K q2k−1

1+q1
. As before, the redundancy of the

optimal binary AIFV code can be upper bounded as follows.

rAIFV ≤ LT0 · P (T0) + LT1 · P (T1)−H(X)

=

[
2q2 +

q21
1 + q1

− h

(
q2

q1 + q2

)]

+
∑

k∈K

[
2q2k − (q2k + q2k−1)h

(
q2k

q2k−1 + q2k

)
+

q1q2k−1

1 + q1

]

+
∑

k∈U\(K∪{1})

(q2k−1 + q2k)

(
1− h

(
q2k

q2k−1 + q2k

))
.

(15)

We can apply Lemma 2 with w1 := q2k−1, w2 := q2k and
q := q1

1+q1
≤ 1

2 to the second term of (15). Also, we can apply
Lemma 3 to the third term of (15). Combining with q1+q2 = 1
and q1 = pmax, we get

rAIFV ≤
[
2(1− q1) +

q21
1 + q1

− h(q1)

]

+
∑

k∈K

q1
1 + q1

(q2k−1 − q2k) +
∑

k∈U\(K∪{1})

1
4
(q2k−1 − q2k)

≤ 2(1− q1) +
q21

1 + q1
− h(q1) +

q1
1 + q1

K−1∑

k=2

(q2k−1 − q2k)

(16)

≤ 2(1− q1) +
q21

1 + q1
− h(q1) +

q1q2
1 + q1

(17)

=
−2p2max + pmax + 2

1 + pmax
− h(pmax). (18)

Ineq. (16) holds since 1
4 < 3−

√
5

2 ≤ q1
1+q1

. Ineq. (17) holds
since the sequence {qk} is non-increasing.

To prove that the derived bound is tight, it is sufficient to
show that there exists a source for every pmax ≥ 1

2 such that
the source attains the bound arbitrarily closely. In particular,
we show that a source with probabilities (pmax, 1−pmax−δ, δ)
satisfies the bound with equality in the limit of δ → 0. Note
that for |X | = 3, there exist only four possible tree structures

(a) 1
2 ≤ pmax ≤

√
5−1
2 . (b)

√
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Fig. 7. The bound achieving trees.

for each code tree, T0 and T1. By examining all the possible
combinations of the structures, it can be shown that the optimal
binary AIFV codes are as illustrated in Fig. 7 for each range
of pmax. We see that the redundancy of the codes coincides
with the bound in the limit of δ → 0. ✷

Proof of Theorem 4. In the case of pmax < 1
2 , we note that

|X | ≥ 3 and thus, q1 must be an internal node. It follows
from Lemma 1 that q1 ≤ 2q2. Since q1 + q2 = 1, we get
1
2 ≤ q1 ≤ 2

3 . By Lemma 4, we obtain

rAIFV < max
1
2≤q1≤ 2

3

q21 − 2q1 + 2− h(q1) =
1

4
. (19)

✷
V. CONCLUSION

In this paper, we considered binary AIFV codes that use two
code trees and decoding delay is at most two bits. We showed
that the redundancy of the codes is at most 1

2 . Furthermore,
we can expect that if the codes are allowed to use more trees
and the decoding delay can be more than two bits, the upper
bound on the redundancy can further be improved. It is also
interesting to derive tighter upper bounds on the redundancy
of optimal binary AIFV codes for pmax < 1

2 , and compare
them to their Huffman counterparts.
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Fig. 2. The redundancy upper bounds of Huffman codes in terms of pmax.

Fig. 3. Comparison on the redundancy upper bounds between binary AIFV
codes and Huffman codes in terms of pmax.

superiority of binary AIFV codes over Huffman codes in terms
of compression ratio.

Theorem 3. For pmax ≥ 1
2 , the redundancy of optimal binary

AIFV codes is upper bounded by f(pmax), where f(x) is
defined as follows.

f(x) =

{
x2 − 2x+ 2− h(x) if 1

2 ≤ x ≤ −1+
√
5

2 ,
−2x2+x+2

1+x − h(x) if −1+
√
5

2 ≤ x < 1.
(3)

The above bound is tight in the sense that there exists a source
distribution for any ϵ > 0 such that the redundancy is larger
than f(pmax)− ϵ.

Fig. 3 compares the upper bounds given by Theorems 2 and
3. We see that the upper bound on the redundancy of optimal
binary AIFV codes is smaller than that of Huffman codes for
every pmax ≥ 1

2 .
We also get Theorem 4, covering the case of pmax < 1

2 .

Theorem 4. For pmax < 1
2 , the redundancy of optimal binary

AIFV codes is at most 1
4 .

The bound given by Theorem 4 is not necessarily tight. Yet
the derived bound is sufficient to prove Corollary 1, which
follows immediately from Theorems 3 and 4.

Corollary 1. The redundancy of optimal binary AIFV codes
is upper bounded by 1

2 for any source.

Note that the bound given by Corollary 1 is tight and is
the same upper bound as that of Huffman codes for X 2. In
fact, it is empirically shown that for some sources, a binary
AIFV code can beat a Huffman code for X 2 [4]. Meanwhile,
in terms of memory efficiency, a binary AIFV code only
requires O(K) for storing code trees, while a Huffman code
for X 2 needs O(K2). This suggests that a binary AIFV code

is more memory efficient than a Huffman code for X 2, while
maintaining competitive compression performance against a
Huffman code for X 2.

IV. PROOFS

We start with proving Theorem 3. The key to the proof is to
transform a Huffman code tree into binary AIFV code trees.
Then, we can utilize the structural property of the Huffman
tree, namely the sibling property, in evaluating the redundancy
of the binary AIFV code. For the notations on the sibling
property, see Section II-B. We first prepare three lemmas,
which provide useful inequalities for the later evaluation of
the bounds.

Lemma 1. Consider a Huffman tree and suppose that q2k−1

is not a leaf. Then, q2k−1 ≤ 2q2k holds.

Proof. Let q′1 and q′2 be children of q2k−1. In the construction
of the Huffman tree, q′1 and q′2 are merged before q2k−1 and
q2k are merged. Thus, q′1 ≤ q2k and q′2 ≤ q2k hold. Therefore,
we get q2k−1 = q′1 + q′2 ≤ 2q2k. ✷

Lemma 2. Assume 0 < 2w2 < w1 and let q ∈
[
0, 1

2

]
be

arbitrary. Then,

2w2 − (w1 + w2)h

(
w2

w1 + w2

)
+ qw1

< q (w1 − w2) . (4)

Proof. Let c ≡ w1
w2

> 2 and define g(x) ≡ h(x) − 2x.
Subtracting the LHS of (4) from the RHS, we get

−qw2 − 2w2 + (1 + c)w2 ·
(
g

(
1

1 + c

)
+

2

1 + c

)

= w2 ·
(
−q + (1 + c) · g

(
1

1 + c

))

≥ w2 ·
(
−1

2
+ (1 + c) · g

(
1

1 + c

))

> 0. (5)

The last inequality follows from infc>2(1 + c)g( 1
1+c ) =

0.754 · · · > 1
2 . ✷

Lemma 3. If q2k−1 ≤ 2q2k, then

(q2k−1 + q2k)

(
1− h

(
q2k

q2k−1 + q2k

))
≤ 1

4
(q2k−1 − q2k) . (6)

Proof. Since q2k ≤ q2k−1 ≤ 2q2k, it follows that 1
3 ≤

q2k
q2k−1+q2k

≤ 1
2 . Further, since 1

2x + 3
4 ≤ h(x) holds for

1
3 ≤ x ≤ 1

2 ,

(q2k−1 + q2k)

(
1− h

(
q2k

q2k−1 + q2k

))

≤ (q2k−1 + q2k)

(
1− q2k

2(q2k−1 + q2k)
− 3

4

)

=
1

4
(q2k−1 − q2k). (7)

✷



Conclusion	
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1.1 FV符号

瞬時 FV符号の平均符号長の最適化問題は以下のようになる．

min
K∑

k=1

p(xk)l(xk)

s.t.
K∑

k=1

2−l(xk) ≤ 1

l(xk) ∈ N K = |X | ≪

X = {a, b, c}
X 2 = {aa, ab, ac, ba, bb, bc, ca, cb, cc}
X 3 = {aaa, aab, aac, aba, abb, abc, aca, acb, acc, baa, bab, bac,

bba, bbb, bbc, bca, bcb, bcc, caa, cab, cac, cba, cbb, cbc, cca, ccb, ccc}
rC ≡ LC −H(X) ≥ 0.

LC ≡
∑

x∈X
pX(x)lC(x).

Y = {0, 1}

pmax ≡ max
x∈X

pX(x).

pmax < 1/2

f(p) =

{
p2 − 2p+ 2− h(p) if 1

2 ≤ p ≤ −1+
√
5

2 ,
−2p2+p+2

1+p − h(p) if −1+
√
5

2 ≤ p < 1.
(1)

O(|X |) O(|X |2) O(|X |m) O(m|X |)
m 1/m m 1/m

1/4 1/2 1/m

1
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TheoreScal	  jusSficaSon	  for	  superior	  performance	  
of	  AIFV	  codes	  over	  Huffman	  codes.	  	
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If	  the	  codes	  are	  allowed	  to	  use	  3	  and	  4	  code	  trees,	  
worst-‐case	  redundancy	  is	  1/3	  and	  1/4,	  respec7vely.	

Further	  extension	


