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Almost Instantaneous (Al) FV codes

Generalization of instantaneous binary FV codes
[Yamamoto, Tsuchihashi, Honda, 2015]

Instantaneous Almost Instantaneous

No.(Code Trees) One Two

Source Symbols | Leaves Leaves + incomplete node
(master node)

Decoding Delay | None At most 2 bits.

Example of binary AIFV code trees.



Almost Instantaneous (Al) FV codes

Encoding (decoding) procedure use 1 and 17 iteratively.
After using a master node, use Ti for the next.

1 No ‘00’ from the root.

a b o€ Only‘00 fromthe
master node.

[ [
0 0
i Y

—>The codes are uniquely decodable.



Worst-case Redundancy of AIFV codes

Huffman code AIFV code

< 1 [Yamamoto+ 2015]

Redundancy <1 /

4 )
AIFV codes have good empirical performance.

Even beat Huffman code for X2 for some sources.

Yamamoto+ 2015
N | D




Worst-case Redundancy of AIFV codes

Huffman code AIFV code

Pmax = E:nEaA}f(pX (33)

Worst-case redundancy in terms of pax  (Our result)



Worst-case Redundancy of AIFV codes

Theorem (Worst-case redundancy of AIFV codes)
For pmax = p > 1/2, the worst-case redundancy of AIFV
codes is

p?—2p+2—h(p) if L <p< =YD

I = { =2 Apt? _pp)  if SYE < p <,

Theorem (Redundancy upper bound of AIFV codes)
For pmax < 1/2, the worst-case redundancy is at most
1/4.
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Comparison with Huffman codes
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Comparison with Huffman codes
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Corollary (Worst-case Redundancy)
Worst-case redundancy of binary AIFV codesis 1/2.




Comparison with Huffman codes

Redundancy <1 <1/2 <1/2
Storage for 5
Code trees O(lx]) O(]x1) O(]&17)

X : Source alphabet

More memory efficient than Huffman codes for X2



Proof idea

(Goal: h
Prove bounds of optimal binary AIFV codes
N Y
/Challenge: A
No simple algorithm known to construct the
optimal AIFV code.
—> Difficult to analyze optimal code directly...
\ Y P Yy ")
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Proof idea

Our approach:

Simple Construction of sub-optimal AIFV codes
from Huffman codes.

Redundancy
A

Sub-optimal AIFV code
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Proof idea

Our approach:

Simple Construction of sub-optimal AIFV codes
from Huffman codes.

Ridundancv Tight in the worst-case!

Sub-optimal AIFV code

Optimal AIFV code

All kinds of
> sources with a

fixed Pmax

..__-__-__-__-__-__-__




Proof outline (1/6)

Simple two-stage construction of sub-optimal

AIFV code trees from Huffman tree
EX.) THuffman

g1 = g2, "+ = Q2K —2

K :size of source alphabet

Sibling pair: (q2x—1, q2k)

005 0.05
Sibling property
[Gallager 1978]
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Proof outline (2/6)

* Two-stage construction

1. From Thuffman 10 Thase
for sibling index £ =2,..., K —1 do

if is a leaf and <(q2x—1)then
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Proof outline (3/6)

* Two-stage construction

Tb ase 1o Tb ase

0 1
D) q1

Only if =32 < ¢
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Proof outline (4/6)

Simple two-stage construction of sub-optimal

AIFV code trees from Huffman tree
E X . ) THuffman TO T]-




Proof outline (5/6)

 Upper bounds for sub-optimal AIFV code can
be evaluated = tight for Pmax > 5. Why?
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Proof outline (6/6)

Optimal AIFV trees for (pmax: 1—pPmax—9,0) coincides
with worst-case trees of sub-optimal AIFV codes.

1o
® Prax
0
]
5 5
®
1_ max 5
0 0 0 b 0
®) N [ | N
0 0 0
Q) [ ) @)
(8) & < pmax < Y51, (b) Y3 < prax < 1.

— The bound of sub-optimal trees is tight for Pmax = %



Conclusion

1. Worst-case redundancy of binary AIFV
codes is 1/2.
2. Worst-case redundancy in terms of

Pmax :pZ 1/2

Theoretical justification for superior performance
of AIFV codes over Huffman codes.

Further extension

If the codes are allowed to use 3 and 4 code trees,

worst-case redundancy is 1/3 and 1/4, respectively.
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