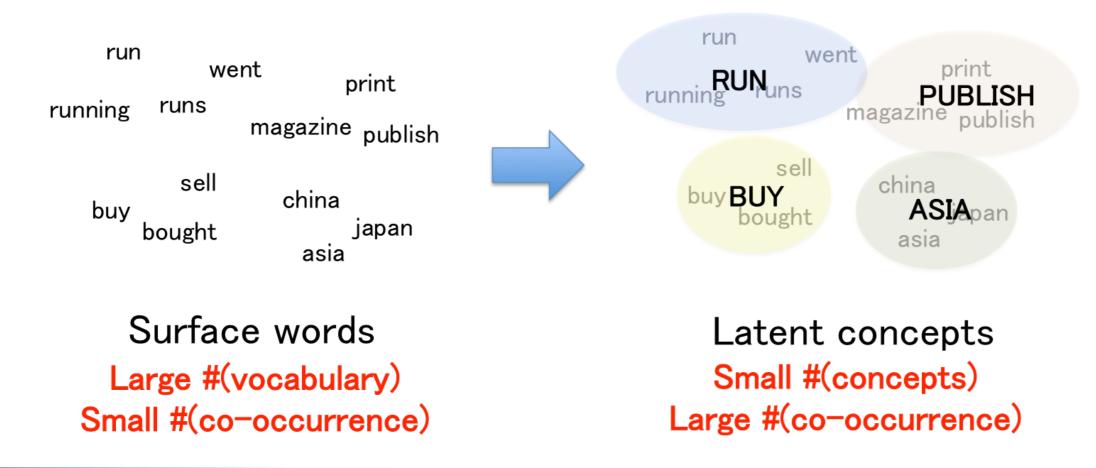


A Latent Concept Topic Models for Robust Topic Inference Using Word Embeddings

Weihua Hu (Utokyo) and Jun'ichi Tsujii (AIST)

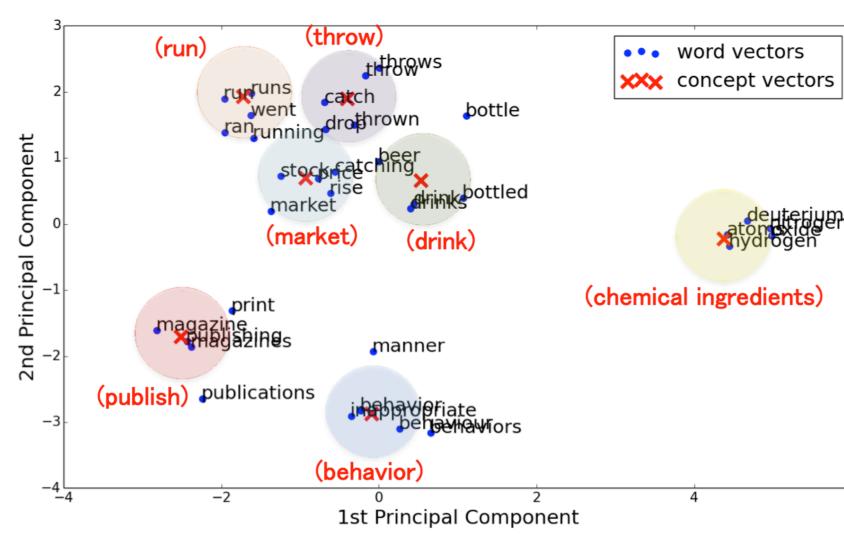
Motivation

- Document-level word co-occurrence is scarce when texts are short and vocabulary is diverse (e.g. blog, SNS, newsgroup).
- Probabilistic topic models (e.g., LDA, pLSI) infers topics based on document-level word co-occurrence.
- → Conventional topic models are not effective.
- > Propose a novel topic model based on co-occurrence statistics of latent concepts to resolve the data sparsity.



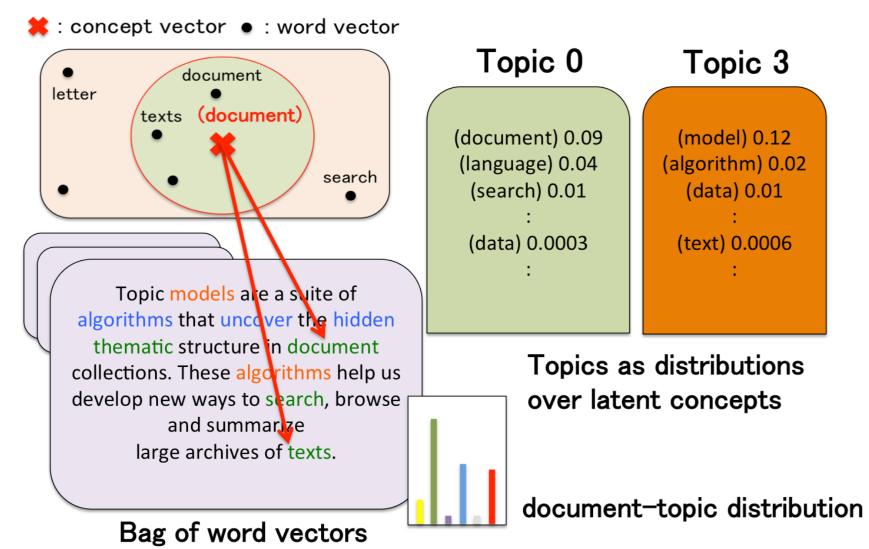
Proposal

- Use Neural word embedding (e.g., word2vec, Glove) to capture conceptual similarity of words.
- → Each cluster corresponds to one latent concept.



GloVe vectors (Pennington+ 2014)

- Define topics as distributions over latent concepts.
- > Resolve data sparsity in short texts.
- Model the generative process of word embeddings.
- → LCTM can naturally handle Out of Vocabulary (OOV) words.

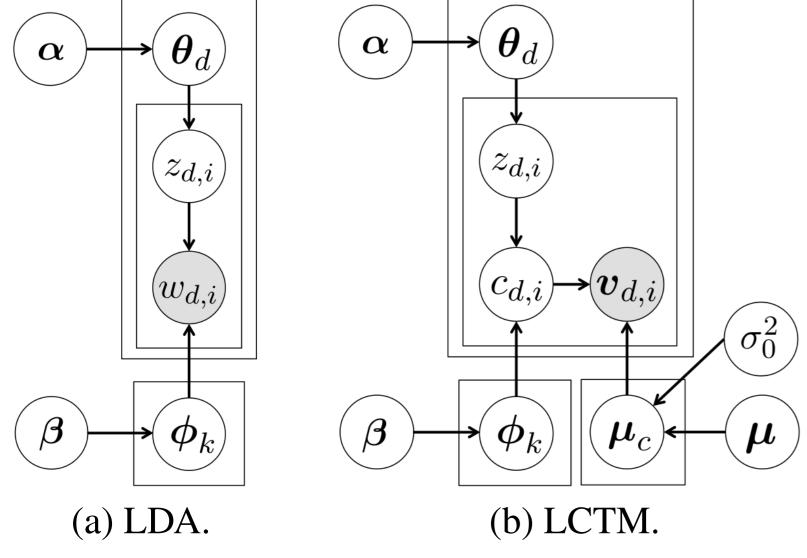


Latent Concept Topic Model (LCTM)

Gaussian variance parameter σ^2 controls the range of the emission.

Graphical Models

Add another layer of latent variables (latent concepts) to mediate data sparsity.

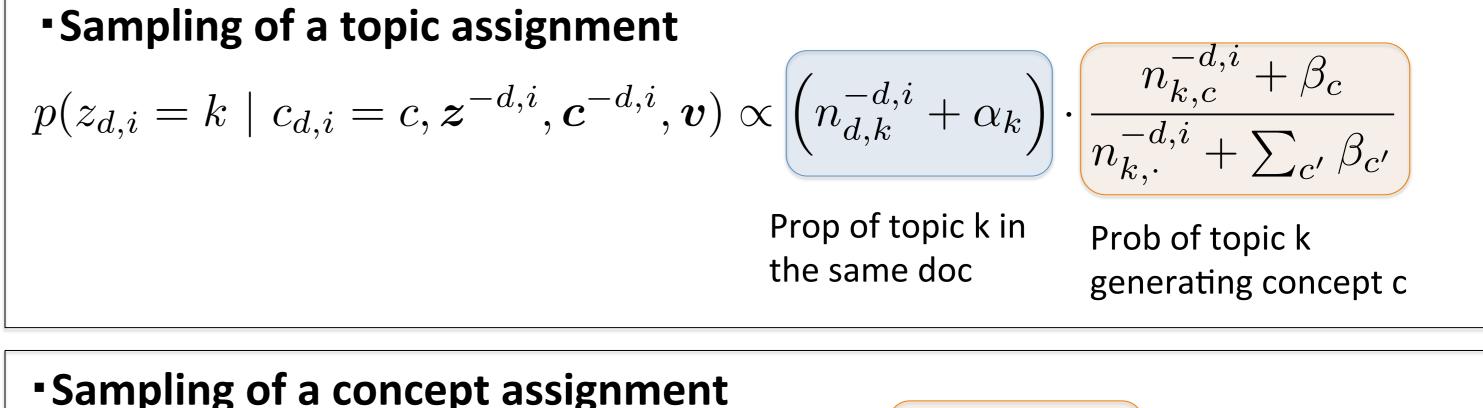


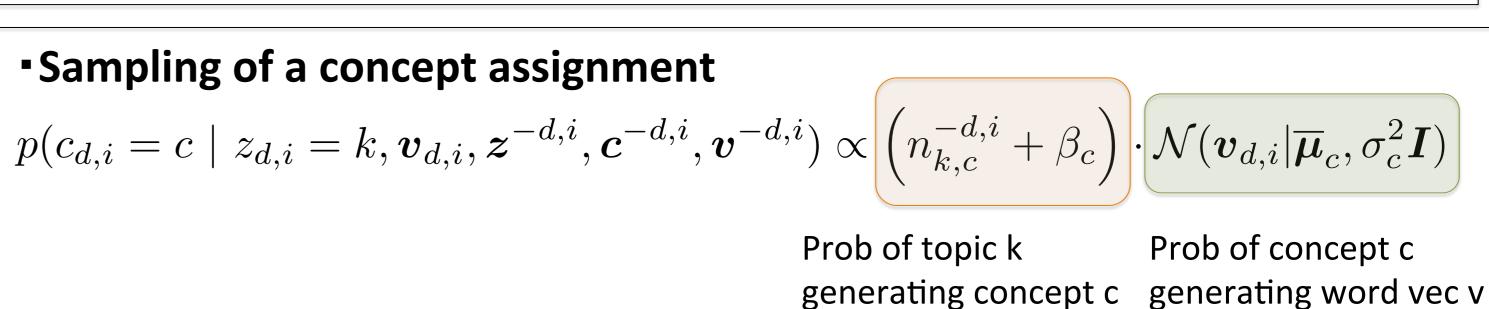
Notations	
α	$oldsymbol{eta}$: Dirichlet prior parameters
$\mid oldsymbol{\mu} \mid$	σ_0^2 : Gaussian prior parameters
	$oldsymbol{ heta}_d$: document-topic
	distribution
	ϕ_k : topic-concept (word)
	distribution
	$w_{d,i}:$ word type
	$oldsymbol{v}_{d,i}$: word vector
	$z_{d,i}$: latent topic
	$c_{d,i}:$ latent concept

 μ_c : concept vector

Overview of topic inference

- Collapsed Gibbs sampler for the approximate inference.
- Sample latent concepts in addition to topics.





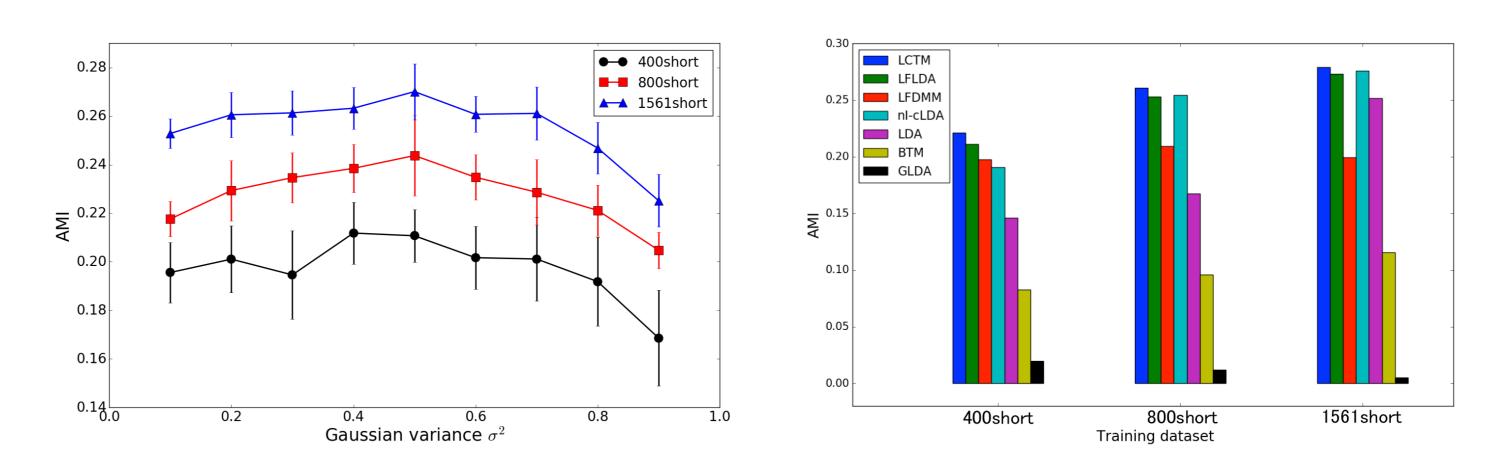
 $\mathcal{N}(\cdot|\overline{\mu}_c,\sigma_c^2I)$: Gaussian distribution corresponding to latent concept c

Experimental Results

Dataset: Short posts (less than 50 words) of 20Newsgroup.

1. Performance on document clustering

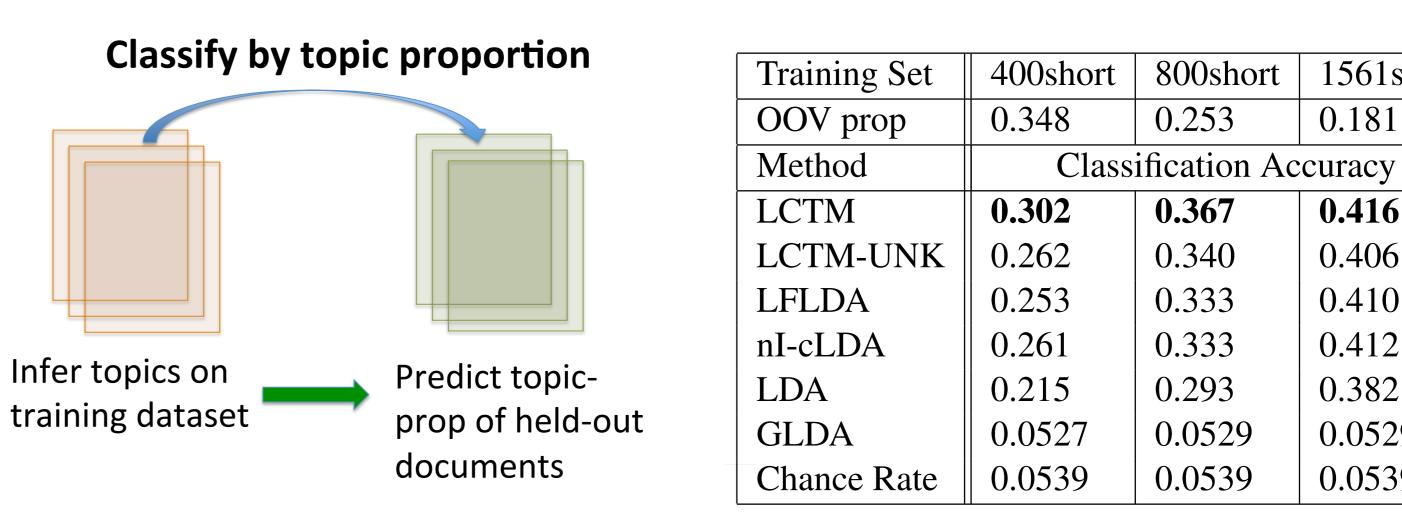
- •Gaussian variance with $\sigma^2=0.5$ consistently performs well.
- LCTM outperforms TM w/o word embeddings.
- LCTM performs comparable to TM w/ word embeddings.



Clustering performance measured by Adjusted Mutual Information (AMI)

2. Performance on handling a high degree of OOV words

- LCTM-UNK (LCTM that ignores OOV) outperforms other TMs.
- LCTM further improves performance of LCTM-UNK.
- → LCTM effectively incorporates OOV words in held-out documents.



0.0539 0.0539 0.0539 Classification accuracy on held-out documents

800short

0.253

0.367

0.340

0.333

0.333

0.293

0.0529

1561short

0.181

0.416

0.406

0.410

0.412

0.382

0.0529

Conclusion

Experimental setting

- Introduced LCTM that infers topics based on documentlevel co-occurrence of latent concepts.
- Showed that LCTM can effectively handle OOV words in held-out documents.
- The same method can be readily applied to topic models that extend LDA.