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Figure 1: Projected latent concepts on the word
embedding space. Concept vectors are annotated
with their representative concepts in parentheses.

words, we expect topically-related latent concepts
to co-occur many times, even in short texts with
diverse usage of words. This in turn promotes
topic inference in LCTM.

LCTM further has the advantage of using con-
tinuous word embedding. Traditional LDA as-
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modeling assumption prevents LDA from han-
dling out of vocabulary (OOV) words in held-out
documents. On the other hands, since our topic
model operates on the continuous vector space, it
can naturally handle OOV words once their vector
representation is provided.

The main contributions of our paper are as fol-
lows: We propose LCTM that infers topics via
document-level co-occurrence patterns of latent
concepts, and derive a collapsed Gibbs sampler
for approximate inference. We show that LCTM
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demonstrate that LCTM achieves superior perfor-
mance to other state-of-the-art topic models in
handling documents with a high degree of OOV
words.

The remainder of the paper is organized as fol-
lows: related work is summarized in Section 2,
while LCTM and its inference algorithm are pre-
sented in Section 3. Experiments on the 20News-
groups are presented in Section 4, and a conclu-
sion is presented in Section 5.

2 Related Work

There have been a number of previous studies on
topic models that incorporate word embeddings.
The closest model to LCTM is Gaussian LDA

(Das et al., 2015), which models each topic as
a Gaussian distribution over the word embedding
space. However, the assumption that topics are
unimodal in the embedding space is not appropri-
ate, since topically related words such as ‘neural’
and ‘networks’ can occur distantly from each other
in the embedding space. Nguyen et al. (2015) pro-
posed topic models that incorporate information
of word vectors in modeling topic-word distribu-
tions. Similarly, Petterson et al. (Petterson et al.,
2010) exploits external word features to improve
the Dirichlet prior of the topic-word distributions.
However, both of the models cannot handle OOV
words, because they assume fixed word types.

Latent concepts in LCTM are closely related
to ‘constraints’ in interactive topic models (ITM)
(Hu et al., 2014). Both latent concepts and con-
straints are designed to group conceptually simi-
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are modeled as Gaussian distributions over the
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constraint for each topic is then modeled as a
multinomial distribution over the constrained set
of words that were identified as mutually related
by humans. In Section 4, we consider a variant of
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As regards short texts, a well-known topic
model is Biterm Topic Model (BTM) (Yan et
al., 2013). BTM directly models the genera-
tion of biterms (pairs of words) in the whole cor-
pus. However, the assumption that pairs of co-
occurring words should be assigned to the same
topic might be too strong (Chen et al., 2015).

3 Latent Concept Topic Model

3.1 Generative Model
The primary difference between LCTM and the
conventional topic models is that LCTM describes
the generative process of word vectors in docu-
ments, rather than words themselves.

Suppose α and β are parameters for the Dirich-
let priors and let vd,i denote the word embedding
for a word type wd,i. The generative model for
LCTM is as follows.

1. For each topic k

(a) Draw a topic concept distribution φk ∼
Dirichlet(β).
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Figure 2: Graphical representation.

2. For each latent concept c

(a) Draw a concept vector µc ∼
N (µ,σ2

0I).
3. For each document d

(a) Draw a document topic distribution
θd ∼ Dirichlet(α).

(b) For the i-th word wd,i in document d
i. Draw its topic assignment zd,i ∼
Categorical(θd).

ii. Draw its latent concept assignment
cd,i ∼ Categorical(φzd,i).

iii. Draw a word vector vd,i ∼
N (µcd,i ,σ

2I).

The graphical models for LDA and LCTM are
shown in Figure 2. Compared to LDA, LCTM
adds another layer of latent variables to indicate
the conceptual similarity of words.

3.2 Posterior Inference
In our application, we observe documents consist-
ing of word vectors and wish to infer posterior dis-
tributions over all the hidden variables. Since there
is no analytical solution to the posterior, we derive
a collapsed Gibbs sampler to perform approximate
inference. During the inference, we sample a la-
tent concept assignment as well as a topic assign-
ment for each word in each document as follows:

p(zd,i = k | cd,i = c,z−d,i, c−d,i,v)
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where nd,k is the number of words assigned to
topic k in document d, and nk,c is the number of
words assigned to both topic k and latent concept
c. When an index is replaced by ‘·’, the number is

obtained by summing over the index. The super-
script −d,i indicates that the current assignments
of zd,i and cd,i are ignored. N (·|µ,Σ) is a mul-
tivariate Gaussian density function with mean µ
and covariance matrix Σ. µc and σ2

c in Eq. (2)
are parameters associated with the latent concept
c and are defined as follows:

µc =
1

σ2 + n−d,i
·,c σ2

0

⎛

⎝σ2µ+ σ2
0 ·

∑

(d′,i′)∈A−d,i
c

vd′,i′

⎞

⎠ ,

(3)

σ2
c =

(
1 +

σ2
0

n−d,i
·,c σ2

0 + σ2

)
σ2, (4)

where A−d,i
c ≡ {(d′, i′) | cd′,i′ = c ∧ (d′, i′) ̸=

(d, i)} (Murphy, 2012). Eq. (1) is similar to the
collapsed Gibbs sampler of LDA (Griffiths and
Steyvers, 2004) except that the second term of
Eq. (1) is concerned with topic-concept distribu-
tions. Eq. (2) of sampling latent concepts has an
intuitive interpretation: the first term encourages
concept assignments that are consistent with the
current topic assignment, while the second term
encourages concept assignments that are consis-
tent with the observed word. The Gaussian vari-
ance parameter σ2 acts as a trade-off parameter
between the two terms via σ2

c . In Section 4.2, we
study the effect of σ2 on document representation.

3.3 Prediction of Topic Proportions

After the posterior inference, the posterior means
of {θd}, {φk} are straightforward to calculate:

θd,k =
nd,k + αk

nd,· +
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k′ αk′
, φk,c =

nk,c + βc

nk,· +
∑

c′ βc′
. (5)

Also posterior means for {µc} are given by
Eq. (3). We can then use these values to predict
a topic proportion θdnew of an unseen document
dnew using collapsed Gibbs sampling as follows:

p(zdnew,i = k | vdnew,i,v
−dnew,i,z−dnew,i,φ,µ)
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The second term of Eq. (6) is a weighted average
of φk,c with respect to latent concepts. We see that
more weight is given to the concepts whose corre-
sponding vectors µc are closer to the word vec-
tor vdnew,i. This to be expected because statistics
of nearby concepts should give more information
about the word. We also see from Eq. (6) that the
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and covariance matrix Σ. µc and σ2

c in Eq. (2)
are parameters associated with the latent concept
c and are defined as follows:
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where A−d,i
c ≡ {(d′, i′) | cd′,i′ = c ∧ (d′, i′) ̸=

(d, i)} (Murphy, 2012). Eq. (1) is similar to the
collapsed Gibbs sampler of LDA (Griffiths and
Steyvers, 2004) except that the second term of
Eq. (1) is concerned with topic-concept distribu-
tions. Eq. (2) of sampling latent concepts has an
intuitive interpretation: the first term encourages
concept assignments that are consistent with the
current topic assignment, while the second term
encourages concept assignments that are consis-
tent with the observed word. The Gaussian vari-
ance parameter σ2 acts as a trade-off parameter
between the two terms via σ2

c . In Section 4.2, we
study the effect of σ2 on document representation.

3.3 Prediction of Topic Proportions

After the posterior inference, the posterior means
of {θd}, {φk} are straightforward to calculate:

θd,k =
nd,k + αk

nd,· +
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k′ αk′
, φk,c =

nk,c + βc

nk,· +
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c′ βc′
. (5)

Also posterior means for {µc} are given by
Eq. (3). We can then use these values to predict
a topic proportion θdnew of an unseen document
dnew using collapsed Gibbs sampling as follows:
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The second term of Eq. (6) is a weighted average
of φk,c with respect to latent concepts. We see that
more weight is given to the concepts whose corre-
sponding vectors µc are closer to the word vec-
tor vdnew,i. This to be expected because statistics
of nearby concepts should give more information
about the word. We also see from Eq. (6) that the
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Figure 2: Graphical representation.

2. For each latent concept c

(a) Draw a concept vector µc ∼
N (µ,σ2

0I).
3. For each document d

(a) Draw a document topic distribution
θd ∼ Dirichlet(α).

(b) For the i-th word wd,i in document d
i. Draw its topic assignment zd,i ∼
Categorical(θd).

ii. Draw its latent concept assignment
cd,i ∼ Categorical(φzd,i).

iii. Draw a word vector vd,i ∼
N (µcd,i ,σ

2I).
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Chapter 1

導入

1.1 概要
x ∼ p(x|y = 1)

x ∼ p(x) = p(y = 1)p(x|y = 1) + p(y = −1)p(x|y = −1) (1.1)

= πp(x|y = 1) + (1− π)p(x|y = −1) (1.2)

x ∈ Rd,y ∈ {0, 1}m, s ∈ {0, 1}m
: X → Rm

Y = {0, 1}
準瞬時 FV符号は，復号遅れを定数シンボルだけ許すことにより，特定の情

報源に対してはハフマン符号より良い圧縮性能を示すことが知られている FV符
号である．しかし，一般の情報源に対して，準瞬時 FV符号の圧縮限界がハフマ
ン符号よりも良くなるのかどうかについては知られていない．本論文では，情報
源の最頻出シンボルの生起確率が与えられたときの，Binary準瞬時 FV符号の
tightな圧縮限界を示すとともに，一般の情報源に対する Binary準瞬時 FV符号
の tightな圧縮限界を示す．

1.2 符号

p(zd,i = k | cd,i = c, z−d,i, c−d,i,v) ∝
(
n−d,i
d,k + αk

)
·

n−d,i
k,c + βc

n−d,i
k,· +

∑
c′ βc′

, (1.3)

P (cd,i = c | zd,i = k,vd,i, z
−d,i, c−d,i,v−d,i) ∝

(
n−d,i
k,c + βc

)
· N (vd,i|µc,σ

2
cI),

(1.4)

D-ary符号とは，情報源シンボル集合 X から有限長の符号語 D∗ への写像と
して定義される．符号語シンボル集合Dは，{0, 1, . . . , D− 1}として一般性を失
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Figure 3: Relationship between σ2 and AMI.

Figure 4: Comparisons on clustering performance
of the topic models.

better handle OOV words in held-out documents
than LFLDA and nl-cLDA do.

4.3 Representation of Held-out Documents
with OOV words

To show that our model can better predict topic
proportions of documents containing OOV words
than other topic models, we conducted an exper-
iment on a classification task. In particular, we
infer topics from the training dataset and predicted
topic proportions of held-out documents using col-
lapsed Gibbs sampler. With the inferred topic
proportions on both training dataset and held-out
documents, we then trained a multi-class classi-
fier (multi-class logistic regression implemented
in sklearn2 python module) on the training dataset
and predicted newsgroup labels of the held-out
documents.

We compared classification accuracy using
LFLDA, nI-cLDA, LDA, GLDA, LCTM and a
variant of LCTM (LCTM-UNK) that ignores OOV
in the held-out documents. A higher classifica-
tion accuracy indicates a better representation of
unseen documents. Table 2 shows the propor-
tion of OOV words and classification accuracy
of the held-out documents. We see that LCTM-
UNK outperforms other topic models in almost

2See http://scikit-learn.org/stable/.

Training Set 400short 800short 1561short
OOV prop 0.348 0.253 0.181
Method Classification Accuracy
LCTM 0.302 0.367 0.416
LCTM-UNK 0.262 0.340 0.406
LFLDA 0.253 0.333 0.410
nI-cLDA 0.261 0.333 0.412
LDA 0.215 0.293 0.382
GLDA 0.0527 0.0529 0.0529
Chance Rate 0.0539 0.0539 0.0539

Table 2: Proportions of OOV words and classifi-
cation accuracy in the held-out documents.

every setting, demonstrating the superiority of
our method, even when OOV words are ignored.
However, the fact that LCTM outperforms LCTM-
UNK in all cases clearly illustrates that LCTM can
effectively make use of information about OOV to
further improve the representation of unseen docu-
ments. The results show that the level of improve-
ment of LCTM over LCTM-UNK increases as the
proportion of OOV becomes greater.

5 Conclusion

In this paper, we have proposed LCTM that is
well suited for application to short texts with di-
verse vocabulary. LCTM infers topics according
to document-level co-occurrence patterns of la-
tent concepts, and thus is robust to diverse vocab-
ulary usage and data sparsity in short texts. We
showed experimentally that LCTM can produce a
superior representation of short documents, com-
pared to conventional topic models. We addition-
ally demonstrated that LCTM can exploit OOV to
improve the representation of unseen documents.
Although our paper has focused on improving per-
formance of LDA by introducing the latent con-
cept for each word, the same idea can be readily
applied to other topic models that extend LDA.

Acknowledgments

We thank anonymous reviewers for their construc-
tive feedback. We also thank Hideki Mima for
helpful discussions and Paul Thompson for in-
sightful reviews on the paper. This paper is based
on results obtained from a project commissioned
by the New Energy and Industrial Technology De-
velopment Organization (NEDO).

Figure 3: Relationship between σ2 and AMI.

Figure 4: Comparisons on clustering performance
of the topic models.

better handle OOV words in held-out documents
than LFLDA and nl-cLDA do.

4.3 Representation of Held-out Documents
with OOV words

To show that our model can better predict topic
proportions of documents containing OOV words
than other topic models, we conducted an exper-
iment on a classification task. In particular, we
infer topics from the training dataset and predicted
topic proportions of held-out documents using col-
lapsed Gibbs sampler. With the inferred topic
proportions on both training dataset and held-out
documents, we then trained a multi-class classi-
fier (multi-class logistic regression implemented
in sklearn2 python module) on the training dataset
and predicted newsgroup labels of the held-out
documents.

We compared classification accuracy using
LFLDA, nI-cLDA, LDA, GLDA, LCTM and a
variant of LCTM (LCTM-UNK) that ignores OOV
in the held-out documents. A higher classifica-
tion accuracy indicates a better representation of
unseen documents. Table 2 shows the propor-
tion of OOV words and classification accuracy
of the held-out documents. We see that LCTM-
UNK outperforms other topic models in almost

2See http://scikit-learn.org/stable/.

Training Set 400short 800short 1561short
OOV prop 0.348 0.253 0.181
Method Classification Accuracy
LCTM 0.302 0.367 0.416
LCTM-UNK 0.262 0.340 0.406
LFLDA 0.253 0.333 0.410
nI-cLDA 0.261 0.333 0.412
LDA 0.215 0.293 0.382
GLDA 0.0527 0.0529 0.0529
Chance Rate 0.0539 0.0539 0.0539

Table 2: Proportions of OOV words and classifi-
cation accuracy in the held-out documents.

every setting, demonstrating the superiority of
our method, even when OOV words are ignored.
However, the fact that LCTM outperforms LCTM-
UNK in all cases clearly illustrates that LCTM can
effectively make use of information about OOV to
further improve the representation of unseen docu-
ments. The results show that the level of improve-
ment of LCTM over LCTM-UNK increases as the
proportion of OOV becomes greater.

5 Conclusion

In this paper, we have proposed LCTM that is
well suited for application to short texts with di-
verse vocabulary. LCTM infers topics according
to document-level co-occurrence patterns of la-
tent concepts, and thus is robust to diverse vocab-
ulary usage and data sparsity in short texts. We
showed experimentally that LCTM can produce a
superior representation of short documents, com-
pared to conventional topic models. We addition-
ally demonstrated that LCTM can exploit OOV to
improve the representation of unseen documents.
Although our paper has focused on improving per-
formance of LDA by introducing the latent con-
cept for each word, the same idea can be readily
applied to other topic models that extend LDA.

Acknowledgments

We thank anonymous reviewers for their construc-
tive feedback. We also thank Hideki Mima for
helpful discussions and Paul Thompson for in-
sightful reviews on the paper. This paper is based
on results obtained from a project commissioned
by the New Energy and Industrial Technology De-
velopment Organization (NEDO).

・Gaussian	
  variance	
  with 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  consistently	
  performs	
  well.	
  
・LCTM	
  outperforms	
  TM	
  w/o	
  word	
  embeddings.	
  
・LCTM	
  performs	
  comparable	
  to	
  TM	
  w/	
  word	
  embeddings.	
  

topic assignment of a word is determined by its
embedding, instead of its word type. Therefore,
LCTM can naturally handle OOV words once their
embeddings are provided.

3.4 Reducing the Computational Complexity
From Eqs. (1) and (2), we see that the computa-
tional complexity of sampling per word is O(K +
SD), where K, S and D are numbers of topics, la-
tent concepts and embedding dimensions, respec-
tively. Since K ≪ S holds in usual settings, the
dominant computation involves the sampling of
latent concept, which costs O(SD) computation
per word.

However, since LCTM assumes that Gaussian
variance σ2 is relatively small, the chance of a
word being assigned to distant concepts is negli-
gible. Thus, we can reasonably assume that each
word is assigned to one of M ≪ S nearest con-
cepts. Hence, the computational complexity is
reduced to O(MD). Since concept vectors can
move slightly in the embedding space during the
inference, we periodically update the nearest con-
cepts for each word type.

To further reduce the computational complexity,
we can apply dimensional reduction algorithms
such as PCA and t-SNE (Van der Maaten and Hin-
ton, 2008) to word embeddings to make D smaller.
We leave this to future work.

4 Experiments

4.1 Datasets and Models Description
In this section, we study the empirical perfor-
mance of LCTM on short texts. We used the
20Newsgroups corpus, which consists of discus-
sion posts about various news subjects authored
by diverse readers. Each document in the corpus is
tagged with one of twenty newsgroups. Only posts
with less than 50 words are extracted for training
datasets. For external word embeddings, we used
50-dimensional GloVe1 that were pre-trained on
Wikipedia. The datasets are summarized in Ta-
ble 1. See appendix A for the detail of the dataset
preprocessing.

We compare the performance of the LCTM to
the following six baselines:

• LFLDA (Nguyen et al., 2015), an extension
of Latent Dirichlet Allocation that incorpo-
rates word embeddings information.

1Downloaded at
http://nlp.stanford.edu/projects/glove/

Dataset Doc size Vocab size Avg len
400short 400 4729 31.87
800short 800 7329 31.78
1561short 1561 10644 31.83
held-out 7235 37944 140.15

Table 1: Summary of datasets.

• LFDMM (Nguyen et al., 2015), an extension
of Dirichlet Multinomial Mixtures that incor-
porates word embeddings information.

• nI-cLDA, non-interactive constrained Latent
Dirichlet Allocatoin, a variant of ITM (Hu et
al., 2014), where constraints are inferred by
applying k-means to external word embed-
dings. Each resulting word cluster is then re-
garded as a constraint. See appendix B for
the detail of the model.

• GLDA (Das et al., 2015), Gaussian LDA.

• BTM (Yan et al., 2013), Biterm Topic Model.

• LDA (Blei et al., 2003).

In all the models, we set the number of topics
to be 20. For LCTM (resp. nI-ITM), we set the
number of latent concepts (resp. constraints) to
be 1000. See appendix C for the detail of hyper-
parameter settings.

4.2 Document Clustering
To demonstrate that LCTM results in a superior
representation of short documents compared to the
baselines, we evaluated the performance of each
model on a document clustering task. We used
a learned topic proportion as a feature for each
document and applied k-means to cluster the doc-
uments. We then compared the resulting clus-
ters to the actual newsgroup labels. Clustering
performance is measured by Adjusted Mutual In-
formation (AMI) (Manning et al., 2008). Higher
AMI indicates better clustering performance. Fig-
ure 3 illustrates the quality of clustering in terms
of Gaussian variance parameter σ2. We see that
setting σ2 = 0.5 consistently obtains good clus-
tering performance for all the datasets with vary-
ing sizes. We therefore set σ2 = 0.5 in the later
evaluation. Figure 4 compares AMI on four topic
models. We see that LCTM outperforms the topic
models without word embeddings. Also, we see
that LCTM performs comparable to LFLDA and
nl-cLDA, both of which incorporate information
of word embeddings to aid topic inference. How-
ever, as we will see in the next section, LCTM can
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Figure 4: Comparisons on clustering performance
of the topic models.
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tion accuracy indicates a better representation of
unseen documents. Table 2 shows the propor-
tion of OOV words and classification accuracy
of the held-out documents. We see that LCTM-
UNK outperforms other topic models in almost

2See http://scikit-learn.org/stable/.

Training Set 400short 800short 1561short
OOV prop 0.348 0.253 0.181
Method Classification Accuracy
LCTM 0.302 0.367 0.416
LCTM-UNK 0.262 0.340 0.406
LFLDA 0.253 0.333 0.410
nI-cLDA 0.261 0.333 0.412
LDA 0.215 0.293 0.382
GLDA 0.0527 0.0529 0.0529
Chance Rate 0.0539 0.0539 0.0539

Table 2: Proportions of OOV words and classifi-
cation accuracy in the held-out documents.

every setting, demonstrating the superiority of
our method, even when OOV words are ignored.
However, the fact that LCTM outperforms LCTM-
UNK in all cases clearly illustrates that LCTM can
effectively make use of information about OOV to
further improve the representation of unseen docu-
ments. The results show that the level of improve-
ment of LCTM over LCTM-UNK increases as the
proportion of OOV becomes greater.

5 Conclusion

In this paper, we have proposed LCTM that is
well suited for application to short texts with di-
verse vocabulary. LCTM infers topics according
to document-level co-occurrence patterns of la-
tent concepts, and thus is robust to diverse vocab-
ulary usage and data sparsity in short texts. We
showed experimentally that LCTM can produce a
superior representation of short documents, com-
pared to conventional topic models. We addition-
ally demonstrated that LCTM can exploit OOV to
improve the representation of unseen documents.
Although our paper has focused on improving per-
formance of LDA by introducing the latent con-
cept for each word, the same idea can be readily
applied to other topic models that extend LDA.
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Figure 1: Projected latent concepts on the word
embedding space. Concept vectors are annotated
with their representative concepts in parentheses.

words, we expect topically-related latent concepts
to co-occur many times, even in short texts with
diverse usage of words. This in turn promotes
topic inference in LCTM.

LCTM further has the advantage of using con-
tinuous word embedding. Traditional LDA as-
sumes a fixed vocabulary of word types. This
modeling assumption prevents LDA from han-
dling out of vocabulary (OOV) words in held-out
documents. On the other hands, since our topic
model operates on the continuous vector space, it
can naturally handle OOV words once their vector
representation is provided.

The main contributions of our paper are as fol-
lows: We propose LCTM that infers topics via
document-level co-occurrence patterns of latent
concepts, and derive a collapsed Gibbs sampler
for approximate inference. We show that LCTM
can accurately represent short texts by outperform-
ing conventional topic models in a clustering task.
By means of a classification task, we furthermore
demonstrate that LCTM achieves superior perfor-
mance to other state-of-the-art topic models in
handling documents with a high degree of OOV
words.

The remainder of the paper is organized as fol-
lows: related work is summarized in Section 2,
while LCTM and its inference algorithm are pre-
sented in Section 3. Experiments on the 20News-
groups are presented in Section 4, and a conclu-
sion is presented in Section 5.

2 Related Work

There have been a number of previous studies on
topic models that incorporate word embeddings.
The closest model to LCTM is Gaussian LDA

(Das et al., 2015), which models each topic as
a Gaussian distribution over the word embedding
space. However, the assumption that topics are
unimodal in the embedding space is not appropri-
ate, since topically related words such as ‘neural’
and ‘networks’ can occur distantly from each other
in the embedding space. Nguyen et al. (2015) pro-
posed topic models that incorporate information
of word vectors in modeling topic-word distribu-
tions. Similarly, Petterson et al. (Petterson et al.,
2010) exploits external word features to improve
the Dirichlet prior of the topic-word distributions.
However, both of the models cannot handle OOV
words, because they assume fixed word types.

Latent concepts in LCTM are closely related
to ‘constraints’ in interactive topic models (ITM)
(Hu et al., 2014). Both latent concepts and con-
straints are designed to group conceptually simi-
lar words using external knowledge in an attempt
to aid topic inference. The difference lies in their
modeling assumptions: latent concepts in LCTM
are modeled as Gaussian distributions over the
embedding space, while constraints in ITM are
sets of conceptually similar words that are interac-
tively identified by humans for each topic. Each
constraint for each topic is then modeled as a
multinomial distribution over the constrained set
of words that were identified as mutually related
by humans. In Section 4, we consider a variant of
ITM, whose constraints are instead inferred using
external word embeddings.

As regards short texts, a well-known topic
model is Biterm Topic Model (BTM) (Yan et
al., 2013). BTM directly models the genera-
tion of biterms (pairs of words) in the whole cor-
pus. However, the assumption that pairs of co-
occurring words should be assigned to the same
topic might be too strong (Chen et al., 2015).

3 Latent Concept Topic Model

3.1 Generative Model
The primary difference between LCTM and the
conventional topic models is that LCTM describes
the generative process of word vectors in docu-
ments, rather than words themselves.

Suppose α and β are parameters for the Dirich-
let priors and let vd,i denote the word embedding
for a word type wd,i. The generative model for
LCTM is as follows.

1. For each topic k

(a) Draw a topic concept distribution φk ∼
Dirichlet(β).


